forked from Randl/improved-improved-wgan-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss_functions.py
25 lines (19 loc) · 1.06 KB
/
loss_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import torch
import torch.autograd as autograd
def gradient_penalty(fake_data, real_data, discriminator):
alpha = torch.cuda.FloatTensor(fake_data.shape[0], 1, 1, 1).uniform_(0, 1).expand(fake_data.shape)
interpolates = alpha * fake_data + (1 - alpha) * real_data
interpolates.requires_grad = True
disc_interpolates, _ = discriminator(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda(),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gradient_penalty
def consistency_term(real_data, discriminator, Mtag=0):
d1, d_1 = discriminator(real_data)
d2, d_2 = discriminator(real_data)
# why max is needed when norm is positive?
consistency_term = (d1 - d2).norm(2, dim=1) + 0.1 * (d_1 - d_2).norm(2, dim=1) - Mtag
return consistency_term.mean()