forked from Randl/improved-improved-wgan-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
194 lines (163 loc) · 8.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import os
from datetime import datetime
import torch
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torchvision.utils as vutils
from tqdm import tqdm, trange
import loss_functions
import models
parser = argparse.ArgumentParser(description='PyTorch Wasserstein GAN Training')
parser.add_argument('--results_dir', metavar='RESULTS_DIR', default='./results', help='results dir')
parser.add_argument('--save', metavar='SAVE', default='', help='saved folder')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', type=str, metavar='FILE', help='evaluate model FILE on validation set')
parser.add_argument('--dataset', metavar='DATASET', default='celeba', help='dataset name')
parser.add_argument('--dataset-path', metavar='DATASET_PATH', default='./dataset', help='dataset folder')
parser.add_argument('--input-size', type=int, default=64, help='image input size')
parser.add_argument('--channels', type=int, default=3, help='input image channels')
parser.add_argument('--z-size', type=int, default=128, help='size of the latent z vector')
parser.add_argument('--gen-filters', type=int, default=64)
parser.add_argument('--disc-filters', type=int, default=64)
parser.add_argument('--lambda1', type=float, default=10, help='Gradient penalty multiplier')
parser.add_argument('--lambda2', type=float, default=2, help='Gradient penalty multiplier')
parser.add_argument('--Mtag', type=float, default=0, help='Gradient penalty multiplier')
parser.add_argument('--disc-iters', type=int, default=5,
help='number of discriminator iterations per each generator iteration')
parser.add_argument('--n_extra_layers', type=int, default=0,
help='Number of extra layers for generator and discriminator')
parser.add_argument('--gpus', default='0', help='gpus used for training - e.g 0,1,3')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=1500, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lrg', '--learning-rate-gen', default=2e-4, type=float, metavar='LRG',
help='initial learning rate for generator')
parser.add_argument('--lrd', '--learning-rate-disc', default=2e-4, type=float, metavar='LRD',
help='initial learning rate for discriminator')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W',
help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=200, type=int, metavar='N', help='print frequency (default: 50)')
parser.add_argument('--seed', default=42, type=int, help='random seed (default: 42)')
def main():
args = parser.parse_args()
# random.seed(args.manualSeed)
torch.manual_seed(args.seed)
time_stamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
# if args.evaluate:
# args.results_dir = '/tmp'
if args.save is '':
args.save = time_stamp
save_path = os.path.join(args.results_dir, args.save)
if not os.path.exists(save_path):
os.makedirs(save_path)
if not os.path.exists(args.dataset_path):
os.makedirs(args.dataset_path)
if args.dataset == 'cifar10':
dataset = datasets.CIFAR10(root=args.dataset_path, download=True,
transform=transforms.Compose([
transforms.Resize(args.input_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
else:
# folder dataset
dataset = datasets.ImageFolder(root=args.dataset_path,
transform=transforms.Compose([
transforms.Resize(args.input_size),
transforms.CenterCrop(args.input_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers)
netG = models.WGANGenerator(output_size=args.input_size, num_filters=args.gen_filters)
print(netG)
netD = models.WGANDiscriminator(input_size=args.input_size, num_filters=args.disc_filters)
print(netD)
fixed_noise = torch.FloatTensor(args.batch_size, args.z_size, 1, 1).normal_(0, 1)
args.gpus = [int(i) for i in args.gpus.split(',')]
torch.cuda.set_device(args.gpus[0])
cudnn.benchmark = True
netG = torch.nn.DataParallel(netG, args.gpus).cuda()
netD = torch.nn.DataParallel(netD, args.gpus).cuda()
# optionally resume from a checkpoint
if args.evaluate:
if not os.path.isfile(args.evaluate):
print('invalid checkpoint: {}'.format(args.evaluate))
return
checkpoint = torch.load(args.evaluate)
netG.load_state_dict(checkpoint['d_state_dict'])
netG.load_state_dict(checkpoint['g_state_dict'])
elif args.resume:
checkpoint_file = args.resume
if os.path.isdir(checkpoint_file):
checkpoint_file = os.path.join(checkpoint_file, 'checkpoint.pth')
if not os.path.isfile(checkpoint_file):
print('invalid checkpoint: {}'.format(args.evaluate))
return
print("loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(checkpoint_file)
args.start_epoch = checkpoint['epoch']
netD.load_state_dict(checkpoint['d_state_dict'])
netG.load_state_dict(checkpoint['g_state_dict'])
print("loaded checkpoint '{}' (epoch {})".format(checkpoint_file, checkpoint['epoch']))
optimizerD = torch.optim.Adam(netD.parameters(), lr=args.lrd)
optimizerG = torch.optim.Adam(netG.parameters(), lr=args.lrg)
for epoch in trange(args.epochs):
disc_iter = args.disc_iters
# disc_iter = 200 if epoch == 0 else args.disc_iters
for i, (real_inputs, _) in enumerate(tqdm(dataloader)):
# Train Discriminator
for p in netD.parameters():
p.requires_grad = True
optimizerD.zero_grad()
# real data
real_inputs = real_inputs.cuda()
errD_real, _ = netD(real_inputs)
errD_real = -errD_real
# fake data
noise = torch.FloatTensor(real_inputs.shape[0], args.z_size, 1, 1).normal_(0, 1)
with torch.no_grad():
fake_inputs = netG(noise)
errD_fake, _ = netD(fake_inputs)
gp = loss_functions.gradient_penalty(fake_inputs.data, real_inputs.data, netD)
ct = loss_functions.consistency_term(real_inputs, netD, args.Mtag)
errD = errD_real.mean(0) + errD_fake.mean(0) + args.lambda1 * gp + args.lambda2 * ct
errD.backward()
optimizerD.step()
# Train Generator
if i % disc_iter == 0:
for p in netD.parameters():
p.requires_grad = False
optimizerG.zero_grad()
noise = torch.FloatTensor(args.batch_size, args.z_size, 1, 1).normal_(0, 1)
fake = netG(noise)
errG, _ = netD(fake)
errG = -errG.mean(0)
errG.backward()
optimizerG.step()
if i % args.print_freq == 0:
tqdm.write('[{}/{}][{}/{}] Loss_D: {} Loss_G: {} '
'Loss_D_real: {} Loss_D_fake {}'.format(epoch, args.epochs, i, len(dataloader),
errD.data.mean(), errG.data.mean(),
errD_real.data.mean(), errD_fake.data.mean()))
real_inputs = real_inputs.mul(0.5).add(0.5)
vutils.save_image(real_inputs.data, '{0}/real_samples.png'.format(save_path))
with torch.no_grad():
fake = netG(fixed_noise)
fake.data = fake.data.mul(0.5).add(0.5)
vutils.save_image(fake.data, '{0}/fake_samples_{1}.png'.format(save_path, epoch))
torch.save({
'epoch': epoch,
'd_state_dict': netD.state_dict(),
'g_state_dict': netG.state_dict(), },
os.path.join(save_path, 'checkpoint.pth'))
if __name__ == '__main__':
main()