forked from Randl/improved-improved-wgan-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
142 lines (116 loc) · 5.21 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from collections import OrderedDict
import numpy as np
import torch.nn as nn
from torch.nn import init
class WGAN(nn.Module):
def __init__(self):
super(WGAN, self).__init__()
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.normal_(m.weight, std=0.02)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.02)
if m.bias is not None:
init.constant_(m.bias, 0)
def _make_extra(self, layer_type, num_filters, n_extra_layers, drop=False, dropout=0):
modules = OrderedDict()
stage_name = "ExtraLayers"
# Extra layers
for i in range(n_extra_layers):
name = stage_name + "_{}".format(i + 1)
if drop:
module = nn.Sequential(
layer_type(num_filters, num_filters, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(num_filters),
self.activation(inplace=True),
nn.Dropout(p=dropout, inplace=True))
else:
module = nn.Sequential(
layer_type(num_filters, num_filters, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(num_filters),
self.activation(inplace=True))
modules[name] = module
return nn.Sequential(modules)
class WGANGenerator(WGAN):
def __init__(self, input_size=128, num_filters=64, out_channels=3, output_size=32, n_extra_layers=0,
activation=nn.ReLU):
super(WGANGenerator, self).__init__()
self.activation = activation
self.has_extra = n_extra_layers > 0
self.out_size = output_size
first_filter = (self.out_size // 8) * num_filters
self.first_conv_trans = nn.Sequential(
nn.ConvTranspose2d(input_size, first_filter, kernel_size=4, stride=1, padding=0, bias=False),
nn.BatchNorm2d(first_filter),
activation(inplace=True))
self.conv_trans = self._make_conv_trans(first_filter)
if self.has_extra:
self.extra = self._make_extra(nn.ConvTranspose2d, num_filters, n_extra_layers)
self.final_conv_trans = nn.Sequential(
nn.ConvTranspose2d(num_filters, out_channels, kernel_size=5, stride=2, padding=2, output_padding=1,
bias=False),
nn.Tanh())
self.init_params()
def forward(self, x):
x = self.first_conv_trans(x)
x = self.conv_trans(x)
if self.has_extra:
x = self.extra(x)
x = self.final_conv_trans(x)
return x
def _make_conv_trans(self, num_filters):
modules = OrderedDict()
stage_name = "ConvTranspose"
# ConvTranspose layers
for i in range(int(np.log2(self.out_size)) - 3):
name = stage_name + "_{}".format(i + 1)
module = nn.Sequential(
nn.ConvTranspose2d(num_filters, num_filters // 2, kernel_size=5, stride=2, padding=2, output_padding=1,
bias=False),
nn.BatchNorm2d(num_filters // 2),
self.activation(inplace=True))
num_filters //= 2
modules[name] = module
return nn.Sequential(modules)
class WGANDiscriminator(WGAN):
def __init__(self, input_size=32, in_channels=3, num_filters=64,
n_extra_layers=0, activation=nn.LeakyReLU, dropout_rate=0.5):
super(WGANDiscriminator, self).__init__()
self.activation = activation
self.has_extra = n_extra_layers > 0
self.input_size = input_size
self.dropout_rate = dropout_rate
self.first_conv = nn.Sequential(nn.Conv2d(in_channels, num_filters, kernel_size=5, stride=2, padding=2),
activation(),
nn.Dropout(p=dropout_rate))
if self.has_extra:
self.extra = self._make_extra(nn.Conv2d, num_filters, n_extra_layers, drop=True, dropout=dropout_rate)
self.conv, last_filter = self._make_conv(num_filters)
self.final_conv = nn.Conv2d(last_filter, 1, kernel_size=4, stride=1, padding=0, bias=False)
self.init_params()
def forward(self, x):
x = self.first_conv(x)
if self.has_extra:
x = self.extra(x)
pre_last = self.conv(x)
x = self.final_conv(pre_last)
return x, pre_last
def _make_conv(self, num_filters):
modules = OrderedDict()
stage_name = "Conv"
# Conv layers
for i in range(int(np.log2(self.input_size)) - 3):
name = stage_name + "_{}".format(i + 1)
module = nn.Sequential(
nn.Conv2d(num_filters, num_filters * 2, kernel_size=5, stride=2, padding=2),
self.activation(),
nn.Dropout(p=self.dropout_rate))
num_filters *= 2
modules[name] = module
return nn.Sequential(modules), num_filters