|
| 1 | +import OpenAI from "openai"; |
| 2 | +import type { ClientOptions } from "openai"; |
| 3 | +import { zodToJsonSchema } from "zod-to-json-schema"; |
| 4 | +import { LogLine } from "../../types/log"; |
| 5 | +import { AvailableModel } from "../../types/model"; |
| 6 | +import { LLMCache } from "../cache/LLMCache"; |
| 7 | +import { |
| 8 | + ChatMessage, |
| 9 | + CreateChatCompletionOptions, |
| 10 | + LLMClient, |
| 11 | + LLMResponse, |
| 12 | +} from "./LLMClient"; |
| 13 | + |
| 14 | +export class GoogleClient extends LLMClient { |
| 15 | + public type = "google" as const; |
| 16 | + private client: OpenAI; |
| 17 | + private cache: LLMCache | undefined; |
| 18 | + private enableCaching: boolean; |
| 19 | + public clientOptions: ClientOptions; |
| 20 | + public hasVision = false; |
| 21 | + |
| 22 | + constructor({ |
| 23 | + enableCaching = false, |
| 24 | + cache, |
| 25 | + modelName, |
| 26 | + clientOptions, |
| 27 | + userProvidedInstructions, |
| 28 | + }: { |
| 29 | + logger: (message: LogLine) => void; |
| 30 | + enableCaching?: boolean; |
| 31 | + cache?: LLMCache; |
| 32 | + modelName: AvailableModel; |
| 33 | + clientOptions?: ClientOptions; |
| 34 | + userProvidedInstructions?: string; |
| 35 | + }) { |
| 36 | + super(modelName, userProvidedInstructions); |
| 37 | + |
| 38 | + // Create OpenAI client with the base URL set to Google API |
| 39 | + this.client = new OpenAI({ |
| 40 | + baseURL: "https://generativelanguage.googleapis.com/v1beta/openai/", |
| 41 | + apiKey: clientOptions?.apiKey || process.env.GEMINI_API_KEY, |
| 42 | + ...clientOptions, |
| 43 | + }); |
| 44 | + |
| 45 | + this.cache = cache; |
| 46 | + this.enableCaching = enableCaching; |
| 47 | + this.modelName = modelName; |
| 48 | + this.clientOptions = clientOptions; |
| 49 | + } |
| 50 | + |
| 51 | + async createChatCompletion<T = LLMResponse>({ |
| 52 | + options, |
| 53 | + retries, |
| 54 | + logger, |
| 55 | + }: CreateChatCompletionOptions): Promise<T> { |
| 56 | + const optionsWithoutImage = { ...options }; |
| 57 | + delete optionsWithoutImage.image; |
| 58 | + |
| 59 | + logger({ |
| 60 | + category: "google", |
| 61 | + message: "creating chat completion", |
| 62 | + level: 1, |
| 63 | + auxiliary: { |
| 64 | + options: { |
| 65 | + value: JSON.stringify(optionsWithoutImage), |
| 66 | + type: "object", |
| 67 | + }, |
| 68 | + }, |
| 69 | + }); |
| 70 | + |
| 71 | + // Try to get cached response |
| 72 | + const cacheOptions = { |
| 73 | + model: this.modelName, |
| 74 | + messages: options.messages, |
| 75 | + temperature: options.temperature, |
| 76 | + response_model: options.response_model, |
| 77 | + tools: options.tools, |
| 78 | + retries: retries, |
| 79 | + }; |
| 80 | + |
| 81 | + if (this.enableCaching) { |
| 82 | + const cachedResponse = await this.cache.get<T>( |
| 83 | + cacheOptions, |
| 84 | + options.requestId, |
| 85 | + ); |
| 86 | + if (cachedResponse) { |
| 87 | + logger({ |
| 88 | + category: "llm_cache", |
| 89 | + message: "LLM cache hit - returning cached response", |
| 90 | + level: 1, |
| 91 | + auxiliary: { |
| 92 | + cachedResponse: { |
| 93 | + value: JSON.stringify(cachedResponse), |
| 94 | + type: "object", |
| 95 | + }, |
| 96 | + requestId: { |
| 97 | + value: options.requestId, |
| 98 | + type: "string", |
| 99 | + }, |
| 100 | + cacheOptions: { |
| 101 | + value: JSON.stringify(cacheOptions), |
| 102 | + type: "object", |
| 103 | + }, |
| 104 | + }, |
| 105 | + }); |
| 106 | + return cachedResponse as T; |
| 107 | + } |
| 108 | + } |
| 109 | + |
| 110 | + // Format messages for Google API (using OpenAI format) |
| 111 | + const formattedMessages = options.messages.map((msg: ChatMessage) => { |
| 112 | + const baseMessage = { |
| 113 | + content: |
| 114 | + typeof msg.content === "string" |
| 115 | + ? msg.content |
| 116 | + : Array.isArray(msg.content) && |
| 117 | + msg.content.length > 0 && |
| 118 | + "text" in msg.content[0] |
| 119 | + ? msg.content[0].text |
| 120 | + : "", |
| 121 | + }; |
| 122 | + |
| 123 | + // Google only supports system, user, and assistant roles |
| 124 | + if (msg.role === "system") { |
| 125 | + return { ...baseMessage, role: "system" as const }; |
| 126 | + } else if (msg.role === "assistant") { |
| 127 | + return { ...baseMessage, role: "assistant" as const }; |
| 128 | + } else { |
| 129 | + // Default to user for any other role |
| 130 | + return { ...baseMessage, role: "user" as const }; |
| 131 | + } |
| 132 | + }); |
| 133 | + |
| 134 | + // Format tools if provided |
| 135 | + let tools = options.tools?.map((tool) => ({ |
| 136 | + type: "function" as const, |
| 137 | + function: { |
| 138 | + name: tool.name, |
| 139 | + description: tool.description, |
| 140 | + parameters: { |
| 141 | + type: "object", |
| 142 | + properties: tool.parameters.properties, |
| 143 | + required: tool.parameters.required, |
| 144 | + }, |
| 145 | + }, |
| 146 | + })); |
| 147 | + |
| 148 | + // Add response model as a tool if provided |
| 149 | + if (options.response_model) { |
| 150 | + const jsonSchema = zodToJsonSchema(options.response_model.schema) as { |
| 151 | + properties?: Record<string, unknown>; |
| 152 | + required?: string[]; |
| 153 | + }; |
| 154 | + const schemaProperties = jsonSchema.properties || {}; |
| 155 | + const schemaRequired = jsonSchema.required || []; |
| 156 | + |
| 157 | + const responseTool = { |
| 158 | + type: "function" as const, |
| 159 | + function: { |
| 160 | + name: "print_extracted_data", |
| 161 | + description: |
| 162 | + "Prints the extracted data based on the provided schema.", |
| 163 | + parameters: { |
| 164 | + type: "object", |
| 165 | + properties: schemaProperties, |
| 166 | + required: schemaRequired, |
| 167 | + }, |
| 168 | + }, |
| 169 | + }; |
| 170 | + |
| 171 | + tools = tools ? [...tools, responseTool] : [responseTool]; |
| 172 | + } |
| 173 | + |
| 174 | + try { |
| 175 | + // Use OpenAI client with Google API |
| 176 | + const apiResponse = await this.client.chat.completions.create({ |
| 177 | + model: this.modelName, |
| 178 | + messages: [ |
| 179 | + ...formattedMessages, |
| 180 | + // Add explicit instruction to return JSON if we have a response model |
| 181 | + ...(options.response_model |
| 182 | + ? [ |
| 183 | + { |
| 184 | + role: "system" as const, |
| 185 | + content: `IMPORTANT: Your response must be valid JSON that matches this schema: ${JSON.stringify(options.response_model.schema)}`, |
| 186 | + }, |
| 187 | + ] |
| 188 | + : []), |
| 189 | + ], |
| 190 | + temperature: options.temperature || 0.7, |
| 191 | + max_tokens: options.maxTokens, |
| 192 | + tools: tools, |
| 193 | + tool_choice: options.tool_choice || "auto", |
| 194 | + }); |
| 195 | + |
| 196 | + // Format the response to match the expected LLMResponse format |
| 197 | + const response: LLMResponse = { |
| 198 | + id: apiResponse.id, |
| 199 | + object: "chat.completion", |
| 200 | + created: Date.now(), |
| 201 | + model: this.modelName, |
| 202 | + choices: [ |
| 203 | + { |
| 204 | + index: 0, |
| 205 | + message: { |
| 206 | + role: "assistant", |
| 207 | + content: apiResponse.choices[0]?.message?.content || null, |
| 208 | + tool_calls: apiResponse.choices[0]?.message?.tool_calls || [], |
| 209 | + }, |
| 210 | + finish_reason: apiResponse.choices[0]?.finish_reason || "stop", |
| 211 | + }, |
| 212 | + ], |
| 213 | + usage: { |
| 214 | + prompt_tokens: apiResponse.usage?.prompt_tokens || 0, |
| 215 | + completion_tokens: apiResponse.usage?.completion_tokens || 0, |
| 216 | + total_tokens: apiResponse.usage?.total_tokens || 0, |
| 217 | + }, |
| 218 | + }; |
| 219 | + |
| 220 | + logger({ |
| 221 | + category: "google", |
| 222 | + message: "response", |
| 223 | + level: 1, |
| 224 | + auxiliary: { |
| 225 | + response: { |
| 226 | + value: JSON.stringify(response), |
| 227 | + type: "object", |
| 228 | + }, |
| 229 | + requestId: { |
| 230 | + value: options.requestId, |
| 231 | + type: "string", |
| 232 | + }, |
| 233 | + }, |
| 234 | + }); |
| 235 | + |
| 236 | + if (options.response_model) { |
| 237 | + // First try standard function calling format |
| 238 | + const toolCall = response.choices[0]?.message?.tool_calls?.[0]; |
| 239 | + if (toolCall?.function?.arguments) { |
| 240 | + try { |
| 241 | + const result = JSON.parse(toolCall.function.arguments); |
| 242 | + if (this.enableCaching) { |
| 243 | + this.cache.set(cacheOptions, result, options.requestId); |
| 244 | + } |
| 245 | + return result as T; |
| 246 | + } catch (e) { |
| 247 | + // If JSON parse fails, the model might be returning a different format |
| 248 | + logger({ |
| 249 | + category: "google", |
| 250 | + message: "failed to parse tool call arguments as JSON, retrying", |
| 251 | + level: 1, |
| 252 | + auxiliary: { |
| 253 | + error: { |
| 254 | + value: e.message, |
| 255 | + type: "string", |
| 256 | + }, |
| 257 | + }, |
| 258 | + }); |
| 259 | + } |
| 260 | + } |
| 261 | + |
| 262 | + // If we have content but no tool calls, try to parse the content as JSON |
| 263 | + const content = response.choices[0]?.message?.content; |
| 264 | + if (content) { |
| 265 | + try { |
| 266 | + // Try to extract JSON from the content |
| 267 | + const jsonMatch = content.match(/\{[\s\S]*\}/); |
| 268 | + if (jsonMatch) { |
| 269 | + const result = JSON.parse(jsonMatch[0]); |
| 270 | + if (this.enableCaching) { |
| 271 | + this.cache.set(cacheOptions, result, options.requestId); |
| 272 | + } |
| 273 | + return result as T; |
| 274 | + } |
| 275 | + } catch (e) { |
| 276 | + logger({ |
| 277 | + category: "google", |
| 278 | + message: "failed to parse content as JSON", |
| 279 | + level: 1, |
| 280 | + auxiliary: { |
| 281 | + error: { |
| 282 | + value: e.message, |
| 283 | + type: "string", |
| 284 | + }, |
| 285 | + }, |
| 286 | + }); |
| 287 | + } |
| 288 | + } |
| 289 | + |
| 290 | + // If we still haven't found valid JSON and have retries left, try again |
| 291 | + if (!retries || retries < 5) { |
| 292 | + return this.createChatCompletion({ |
| 293 | + options, |
| 294 | + logger, |
| 295 | + retries: (retries ?? 0) + 1, |
| 296 | + }); |
| 297 | + } |
| 298 | + |
| 299 | + throw new Error( |
| 300 | + "Create Chat Completion Failed: Could not extract valid JSON from response", |
| 301 | + ); |
| 302 | + } |
| 303 | + |
| 304 | + if (this.enableCaching) { |
| 305 | + this.cache.set(cacheOptions, response, options.requestId); |
| 306 | + } |
| 307 | + |
| 308 | + return response as T; |
| 309 | + } catch (error) { |
| 310 | + logger({ |
| 311 | + category: "google", |
| 312 | + message: "error creating chat completion", |
| 313 | + level: 1, |
| 314 | + auxiliary: { |
| 315 | + error: { |
| 316 | + value: error.message, |
| 317 | + type: "string", |
| 318 | + }, |
| 319 | + requestId: { |
| 320 | + value: options.requestId, |
| 321 | + type: "string", |
| 322 | + }, |
| 323 | + }, |
| 324 | + }); |
| 325 | + throw error; |
| 326 | + } |
| 327 | + } |
| 328 | +} |
0 commit comments