-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
281 lines (222 loc) · 8.73 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""
Convolutional neural networks take a portion of the image to identify features
that make up an output. When recognizing the numbers in the MNIST dataset,
CNNs follow the philosophy 3Blue1Brown intended to map on the network.
"""
from curtsies.fmtfuncs import red, green, blue, yellow
from cv2 import cv2
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as functional
import torch.optim as optim
import time
#OUTPUTS = ['backhand_index_pointing_down',
# 'backhand_index_pointing_right',
# 'backhand_index_pointing_up',
# 'call_me_hand',
# 'crossed_fingers',
# 'flexed_bicep',
# 'hand_with_fingers_splayed',
# 'index_pointing_up',
# 'left_facing_fist',
# 'love-you_gesture',
# 'middle_finger',
# 'ok_hand',
# 'oncoming_fist',
# 'pinched_fingers'
# 'pinching_hand',
# 'raised_back_of_hand',
# 'raised_fist',
# 'raised_hand',
# 'right_facing_fist',
# 'sign_of_the_horns',
# 'thumbs_down',
# 'thumbs_up',
# 'victory_hand',
# 'vulcan_salute',
# 'waving_hand']
TRAINING_DATA = 'hands_10.npy'
OUTPUTS = ['backhand_index_pointing_down',
'backhand_index_pointing_right',
'backhand_index_pointing_up',
'call_me_hand',
'crossed_fingers',
'flexed_bicep',
'hand_with_fingers_splayed',
'index_pointing_up',
'left_facing_fist',
'love-you_gesture']
DEVICE = 'cuda:0'
MODEL_NAME = f"model-{int(time.time() % 100000)}"
IMAGE_SIZE_X = 200
IMAGE_SIZE_Y = 200
if torch.cuda.is_available():
device = torch.device(DEVICE)
print(blue("Running on GPU"))
else:
device = torch.device(DEVICE)
print(yellow("Running on CPU"))
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 5)
self.conv2 = nn.Conv2d(32, 64, 5)
self.conv3 = nn.Conv2d(64, 128, 5)
x = torch.randn(IMAGE_SIZE_X, IMAGE_SIZE_Y).view(-1, 1, IMAGE_SIZE_X, IMAGE_SIZE_Y)
self._to_linear = None
self.convs(x)
self.fc1 = nn.Linear(self._to_linear, 512)
self.fc2 = nn.Linear(512, 25)
def convs(self, x):
x = functional.max_pool2d(functional.relu(self.conv1(x)), (2, 2))
x = functional.max_pool2d(functional.relu(self.conv2(x)), (2, 2))
x = functional.max_pool2d(functional.relu(self.conv3(x)), (2, 2))
if self._to_linear is None:
self._to_linear = x[0].shape[0] * x[0].shape[1] * x[0].shape[2]
return x
def forward(self, x):
x = self.convs(x)
x = x.view(-1, self._to_linear)
x = functional.relu(self.fc1(x))
x = self.fc2(x)
return functional.softmax(x, dim=1)
def fwd_pass(net, loss_function, optimizer, x, y, train=False):
if train:
net.zero_grad()
optimizer.zero_grad()
outputs = net(x)
matches = [torch.argmax(i).item() == j for i, j in zip(outputs, y)]
accuracy = matches.count(True) / len(y)
loss = loss_function(outputs, y)
if train:
loss.backward()
optimizer.step()
return accuracy, loss
def test(net, loss_function, optimizer, test_x, test_y, size=50):
rand_start = int(np.random.random() * (len(test_x) - size))
test_x = test_x[rand_start:rand_start + size]
test_y = test_y[rand_start:rand_start + size]
batch_size = 50
val_acc_sum = 0
val_loss_sum = 0
with torch.no_grad():
for i in range(0, len(test_x), batch_size):
batch_x = test_x[i:i + batch_size].view(-1, 1, IMAGE_SIZE_X, IMAGE_SIZE_Y).to(device)
batch_y = test_y[i:i + batch_size].to(device)
val_acc, val_loss = fwd_pass(net, loss_function, optimizer, batch_x, batch_y)
val_acc_sum += val_acc
val_loss_sum += val_loss.item()
return val_acc_sum / (len(test_x) / batch_size), val_loss_sum / (len(test_x) / batch_size)
def train(net, loss_function, optimizer, train_x, train_y, test_x, test_y):
batch_size = 100
epochs = 10
for epoch in range(epochs):
count = 0
val_count = 0
sum_acc = 0
sum_loss = 0
sum_val_acc = 0
sum_val_loss = 0
for i in tqdm(range(0, len(train_x), batch_size)):
batch_x = train_x[i:i + batch_size].view(-1, 1, IMAGE_SIZE_X, IMAGE_SIZE_Y).to(device)
batch_y = train_y[i:i + batch_size].to(device)
with torch.enable_grad():
acc, loss = fwd_pass(net, loss_function, optimizer, batch_x, batch_y, train=True)
sum_acc += acc
sum_loss += loss.item()
count += 1
if i % 200 == 0:
val_acc, val_loss = test(net, loss_function, optimizer, test_x, test_y)
sum_val_acc += val_acc
sum_val_loss += val_loss
val_count += 1
print(yellow(f'EPOCH: {epoch}\t'
f'avg acc: {round(sum_acc / count, 5)}\t'
f'avg loss: {round(sum_loss / count, 5)}\t'
f'avg val acc: {round(sum_val_acc / val_count, 5)}\t'
f'avg val loss: {round(sum_val_loss / val_count, 5)}'))
def loadTrainingData():
training_data = np.load(TRAINING_DATA, allow_pickle=True)
np.random.shuffle(training_data)
x = torch.Tensor([i[0] for i in training_data]).view(-1, IMAGE_SIZE_X, IMAGE_SIZE_Y)
x /= 255. # Change pixel value to range[0, 1)
y = [np.argwhere(i[1] == 1.)[0][0] for i in training_data]
y = torch.LongTensor(y)
VAL_PCT = 0.1
val_size = int(len(x) * VAL_PCT)
train_x = x[:-val_size]
train_y = y[:-val_size]
test_x = x[-val_size:]
test_y = y[-val_size:]
return train_x, train_y, test_x, test_y
def test_webcam(net, mirror=False):
cam = cv2.VideoCapture(0)
while True:
ret_val, image = cam.read(cv2.IMREAD_GRAYSCALE)
img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
img = img[:, img.shape[0] // 2: (img.shape[0] // 2) + img.shape[1]]
img = cv2.resize(img, (IMAGE_SIZE_X, IMAGE_SIZE_Y))
cv2.imshow('ai', img)
img = img / 255.
# img = np.array(img, dtype=np.double)
img = torch.as_tensor(img, dtype=torch.float)
img = img.view(-1, 1, IMAGE_SIZE_X, IMAGE_SIZE_Y)
with torch.no_grad():
output = net(img)
if torch.max(output) > 0.95:
out = torch.argmax(output)
for output in OUTPUTS:
print(red(output))
if out < len(OUTPUTS):
print(OUTPUTS[int(out)])
if cv2.waitKey(1) == 27:
break # esc to quit
cv2.destroyAllWindows()
def test_image(net, name):
_name = name
while True:
try:
image = cv2.imread(_name, cv2.IMREAD_GRAYSCALE)
break
except FileNotFoundError as _:
_name = str(input(red('could not find file. try again: ')))
image = image[:, (1920 - 1080) // 2:(1920 - 1080) // 2 + 1080]
resize_img = cv2.resize(image, (IMAGE_SIZE_X, IMAGE_SIZE_Y))
cv2.imwrite('tiny.png', resize_img)
resize_img = np.asarray(resize_img)
resize_img = [i / 255. for i in resize_img]
tensor_img = torch.tensor(resize_img, dtype=torch.float).view(-1, 1, IMAGE_SIZE_X, IMAGE_SIZE_Y)
# cv2.imshow('current test', image)
tensor_img = tensor_img.to(DEVICE)
with torch.no_grad():
output = net(tensor_img)
argmax = int(torch.argmax(output))
print(green(OUTPUTS[argmax]), '\tconfidence:', torch.max(output).item())
def main():
print(yellow('creating network'))
net = Net()
print(green('sending network to device'))
net = net.to(device)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=.00001)
train_x, train_y, test_x, test_y = loadTrainingData()
print(blue('begin training'))
train(net, loss_function, optimizer, train_x, train_y, test_x, test_y)
# x = train_x + test_x
# y = train_y + test_y
# training_data = np.load("hands.npy", allow_pickle=True)
# x = torch.Tensor([i[0] for i in training_data]).view(-1, IMAGE_SIZE_X, IMAGE_SIZE_Y)
# x /= 255. # Change pixel value to range[0, 1)
# y = [np.argwhere(i[1] == 1.)[0][0] for i in training_data]
# y = torch.LongTensor(y)
# acc, loss = test(net, loss_function, optimizer, x, y, size=len(train_x))
# print(green(f'Total Dataset Accuracy: {acc}, Total Dataset Loss: {loss}'))
while True:
choice = str(input('test with a picture filename or type exit: '))
if choice == 'exit':
break
test_image(net, choice)
if __name__ == "__main__":
main()