-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount_nodes.py
52 lines (37 loc) · 1.9 KB
/
count_nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#node counter
#average stats
import pandas as pd
import os
import csv
import numpy as np
target = '/exports/csce/datastore/geos/users/s1134744/LSDTopoTools/Topographic_projects/full_himalaya_5000/'
files = ['0_1_ex_MChiSegmented_burned','0_15_ex_MChiSegmented_burned','0_2_ex_MChiSegmented_burned','0_25_ex_MChiSegmented_burned',
'0_3_ex_MChiSegmented_burned','0_35_ex_MChiSegmented_burned','0_4_ex_MChiSegmented_burned','0_45_ex_MChiSegmented_burned',
'0_5_ex_MChiSegmented_burned','0_55_ex_MChiSegmented_burned','0_6_ex_MChiSegmented_burned','0_65_ex_MChiSegmented_burned',
'0_7_ex_MChiSegmented_burned','0_75_ex_MChiSegmented_burned','0_8_ex_MChiSegmented_burned','0_85_ex_MChiSegmented_burned',
'0_9_ex_MChiSegmented_burned','0_95_ex_MChiSegmented_burned']
def getStats(source,column):
df = pd.read_csv(target+source+'.csv')
series = df[column]
list = series.tolist()
length = len(list)
median = np.median(list)
mean = np.mean(list)
return length,median,mean
def writeOutput(name,output_1='',output_2='',output_3=''):
name = name.replace('_ex_MChiSegmented_burned','')
with open(target+'output_node_calculations_precip.csv','a') as csvfile:
csvWriter = csv.writer(csvfile,delimiter=',')
csvWriter.writerow((name,output_1,output_2,output_3))
node_lengths = []
with open(target+'output_node_calculations.csv','w') as csvfile:
csvWriter = csv.writer(csvfile,delimiter=',')
csvWriter.writerow(('concavity','total_nodes','median','mean'))
for file in files:
length,median,mean = getStats(file,'secondary_burned_data')
print "there are %s nodes in %s"%(length,file)
node_lengths.append(length)
writeOutput(file,length,median,mean)
print node_lengths
print sum(node_lengths)
writeOutput('total_nodes',sum(node_lengths))