-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic.py
108 lines (78 loc) · 3.57 KB
/
basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import json
from difflib import get_close_matches
import gradio
def load_base(file_path: str) -> dict:
with open(file_path, "r") as file:
data: dict = json.load(file)
return data
def save_base(file_path: str, data: dict):
with open(file_path, "w") as file:
json.dump(data, file, indent=2)
def find_best_match(user_question: str, questions: list[str]) -> str | None:
matches: list = get_close_matches(user_question, questions, n=1, cutoff=0.6) # noqa
return matches[0] if matches else None
def get_answer_for_question(question: str, knowledge_base: dict) -> str | None:
for q in knowledge_base["questions"]:
if q["question"] == question:
return q["answer"]
def add_answer_from_user(
path_to_knowledge: str, knowledge_base: dict, user_input: str
) -> None: # noqa
print("Bot: I don't know the answer, Can you teach me?\n")
new_answer: str = input('Type the answer or "skip" to skip:\n') # noqa
if new_answer.lower() != "skip":
knowledge_base["questions"].append(
{"question": user_input, "answer": new_answer}
) # noqa
save_base(path_to_knowledge, knowledge_base)
print("Bot: Thank you! I learned a new response!")
def add_question_to_unanswered(
path_to_unanswered: str, user_input: str
) -> None: # noqa
print(
"""Bot: I don't know the answer, I will check, please try again later.
For more information you can contactthe secretary office at
999-999-99 between now and forever """
)
unanswered_base: dict = load_base(path_to_unanswered)
unanswered_base["questions"].append({"question": user_input})
save_base(path_to_unanswered, unanswered_base)
def chat_bot(path_to_knowledge: str, path_to_unanswered: str):
knowledge_base: dict = load_base(path_to_knowledge)
while True:
user_input: str = input("You: ")
if user_input.lower() == "quit" or user_input.lower() == "exit":
break
questions = [q["question"] for q in knowledge_base["questions"]]
best_match: str | None = find_best_match(user_input, questions)
if best_match:
answer: str = get_answer_for_question(best_match, knowledge_base)
print(f"Bot: {answer}")
else:
# add_answer_from_user(path_to_knowledge, knowledge_base, user_input) # noqa
add_question_to_unanswered(path_to_unanswered, user_input)
def custom_bot(user_input: str) -> str:
knowledge_base: dict = load_base("knowledge_base.json")
unanswered_base: dict = load_base("unanswered_base.json")
questions = [q["question"] for q in knowledge_base["questions"]]
best_match: str | None = find_best_match(user_input, questions)
if best_match:
answer: str = get_answer_for_question(best_match, knowledge_base)
return answer
else:
# add_answer_from_user(path_to_knowledge, knowledge_base, user_input) # noqa
# The print statement inside add_question_to_unanswered thankfully gets ignored by gradio
add_question_to_unanswered(
user_input=user_input, path_to_unanswered="unanswered_base.json"
)
return """ I don't know the answer, I will check, please try again later.
For more information you can contact the secretary office at
999-999-99 between now and forever """
def main() -> None:
# chat_bot("knowledge_base.json", "unanswered_base.json")
demo = gradio.Interface(
fn=custom_bot, inputs="text", outputs="text", title="ChatBot"
)
demo.launch(share=True)
if __name__ == "__main__":
main()