-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
52 lines (48 loc) · 1.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import numpy as np
from evaluation import metrics
class Train():
def __init__(self,model:torch.nn.Module
,optimizer:torch.optim,
epochs:int,
dataloader:torch.utils.data.dataloader,
criterion:torch.nn,
test_obj,
device='cpu',
print_cost=True):
self.model = model
self.optimizer = optimizer
self.epochs = epochs
self.dataloader = dataloader
self.criterion = criterion
self.device = device
self.print_cost = print_cost
self.test = test_obj
def train(self):
model = self.model
optimizer = self.optimizer
total_epochs = self.epochs
dataloader = self.dataloader
criterion = self.criterion
total_batch = len(dataloader)
loss = []
device = self.device
test = self.test
for epochs in range(0,total_epochs):
#avg_cost = 0
for user,item,target in dataloader:
user,item,target=user.to(device),item.to(device),target.float().to(device)
optimizer.zero_grad()
pred = model(user, item)
cost = criterion(pred,target)
cost.backward()
optimizer.step()
#avg_cost += cost.item() / total_batch
if self.print_cost:
#print(f'Epoch: {(epochs + 1):04}, {criterion._get_name()}= {avg_cost:.9f}')
HR, NDCG = metrics(model,test,10,device)
print("HR: {:.3f}\tNDCG: {:.3f}".format(np.mean(HR), np.mean(NDCG)))
#loss.append(avg_cost)
if self.print_cost:
print('Learning finished')
return loss