-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathModel.py
358 lines (341 loc) · 11.3 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
from Settings import settings
from Parameters import get_parameters
from ollama import Client as Ollama_Client
from openai import OpenAI as OpenAI_client
import google.generativeai as gemini_client
from llama_index.core import Settings
from llama_index.core.base.llms.types import ChatResponse
from llama_index.core.schema import ImageDocument
from llama_index.llms.ollama import Ollama
from llama_index.llms.openai import OpenAI
from llama_index.llms.gemini import Gemini
from llama_index.core.llms import ChatMessage
from llama_index.multi_modal_llms.openai.utils import (
generate_openai_multi_modal_chat_message,
)
import wx
from Utils import displayError
from pathlib import Path
import os
from Parameters import get_parameters
from RAG import RAG
import re
import tiktoken
import tiktoken_ext
from tiktoken_ext import openai_public
from llama_index.core.callbacks import CallbackManager, TokenCountingHandler
import base64
from llama_index.core import SimpleDirectoryReader
from llama_index.readers.web import (
MainContentExtractorReader,
TrafilaturaWebReader,
BeautifulSoupWebReader,
)
from llama_index.llms.openai_like import OpenAILike
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
class Model:
def __init__(self):
self.messages = []
self.generate = False
self.image = None
self.documentURL = None
self.document = None
self.rag = None
self.models = []
self.token_counter = TokenCountingHandler(
tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode
)
def get_models(self):
ids = []
if settings.llm_name == "Ollama":
ids = [
model["name"]
for model in Ollama_Client(host=settings.ollama_base_url).list()[
"models"
]
]
if settings.llm_name == "OpenAI":
if not settings.openai_api_key:
return ids
client = OpenAI_client(api_key=settings.openai_api_key)
ids = [
i.id for i in list(client.models.list().data) if i.id.startswith("gpt")
]
if settings.llm_name == "OpenAILike":
client = OpenAI_client(
base_url=settings.openailike_base_url,
api_key=settings.openailike_api_key,
)
ids = [i.id for i in list(client.models.list().data)]
if settings.llm_name == "Gemini":
if not settings.gemini_api_key:
return ids
gemini_client.configure(api_key=settings.gemini_api_key)
ids = [
m.name
for m in list(gemini_client.list_models())
if "generateContent" in m.supported_generation_methods
]
ids.sort()
self.models = ids
return ids
def init_llm(self):
if settings.model_name not in self.models:
settings.model_name = self.get_models()[0]
options = get_parameters()
if settings.llm_name == "Ollama":
Settings.llm = Ollama(
model=settings.model_name,
request_timeout=3600,
base_url=settings.ollama_base_url,
additional_kwargs=options,
)
if settings.llm_name == "OpenAI":
if not settings.openai_api_key:
return
additional_kwargs = {
"seed": options["seed"],
"temperature": options["temperature"],
"top_p": options["top_p"],
"max_tokens": options["num_ctx"],
"presence_penalty": options["presence_penalty"],
"frequency_penalty": options["frequency_penalty"],
}
Settings.llm = OpenAI(
model=settings.model_name,
api_key=settings.openai_api_key,
additional_kwargs=additional_kwargs,
)
elif settings.llm_name == "Gemini":
if not settings.gemini_api_key:
return
os.environ["GOOGLE_API_KEY"] = settings.gemini_api_key
generate_kwargs = {
"temperature": options["temperature"],
"top_p": options["top_p"],
"top_k": options["top_k"],
"max_output_tokens": options["num_ctx"],
}
Settings.llm = Gemini(
model_name=settings.model_name, generate_kwargs=generate_kwargs
)
elif settings.llm_name == "OpenAILike":
if not settings.openailike_base_url or not settings.openailike_api_key:
return
additional_kwargs = {
"seed": options["seed"],
"temperature": options["temperature"],
"top_p": options["top_p"],
"max_tokens": options["num_ctx"],
"presence_penalty": options["presence_penalty"],
"frequency_penalty": options["frequency_penalty"],
"timeout": 3600,
}
Settings.llm = OpenAILike(
model=settings.model_name,
api_base=settings.openailike_base_url,
api_key=settings.openailike_api_key,
timeout=3600,
additional_kwargs=additional_kwargs,
)
Settings.llm.is_chat_model = True
else:
return
Settings.chunk_size = settings.chunk_size
Settings.chunk_overlap = settings.chunk_overlap
Settings.similarity_top_k = settings.similarity_top_k
Settings.similarity_cutoff = settings.similarity_cutoff
Settings.context_window = options["num_ctx"]
# Settings.num_output = options['num_ctx']-256
def delete(self):
Ollama_Client(host=settings.ollama_base_url).delete(settings.model_name)
def create(self, name, modelfile):
Ollama_Client(host=settings.ollama_base_url).create(
name, modelfile=modelfile, stream=False
)
def modelfile(self):
return Ollama_Client(host=settings.ollama_base_url).show(settings.model_name)[
"modelfile"
]
def load_index(self, folder):
if not self.rag:
self.rag = RAG()
self.rag.load_index(folder)
def startRag(self, path, setStatus):
self.rag = RAG()
if isinstance(path, list):
self.rag.loadFolder(path, setStatus)
elif path.startswith("http"):
self.rag.loadUrl(path, setStatus)
else:
self.rag.loadFolder(path, setStatus)
def loadDocument(self, paths):
required_exts = [
".hwp",
".pdf",
".docx",
".pptx",
".ppt",
".pptm",
".csv",
".epub",
".md",
".mbox",
]
documents = SimpleDirectoryReader(
input_files=paths, required_exts=required_exts
).load_data()
texts = [f"```{d.metadata['file_name']}\n{d.text}\n```" for d in documents]
self.document = "\n---\n".join(texts)
def getURL(self, url):
documents = None
try:
documents = MainContentExtractorReader().load_data([url])
if len(documents) == 0 or documents[0].text.strip() == "":
raise (Exception("nothing found."))
except:
try:
documents = TrafilaturaWebReader().load_data([url])
if len(documents) == 0 or documents[0].text.strip() == "":
raise (Exception("nothing found."))
except:
try:
documents = BeautifulSoupWebReader().load_data([url])
if len(documents) == 0 or documents[0].text.strip() == "":
raise (Exception("nothing found."))
except Exception as e:
displayError(e)
if documents and documents[0].text.strip():
return documents[0].text.strip()
def setModel(self, name):
if settings.model_name == name:
return
settings.model_name = name
def setSystem(self, system):
if system == "":
return
system = ChatMessage(role="system", content=system)
if len(self.messages) == 0 or self.messages[0].role != "system":
self.messages.insert(0, system)
elif self.messages[0].role == "system":
self.messages[0] = system
def ask(self, content, window):
self.init_llm()
self.token_counter.reset_counts()
if not self.image:
Settings.callback_manager = CallbackManager([self.token_counter])
if self.documentURL:
self.document = self.getURL(self.documentURL)
if self.document:
content += "\n---\n" + self.document
message = ChatMessage(role="user", content=content)
if self.image:
image = encode_image(self.image)
document = ImageDocument(image=image, image_path=self.image)
if settings.llm_name == "Ollama":
message = ChatMessage(
role="user", content=content, additional_kwargs={"images": [image]}
)
elif settings.llm_name == "Gemini":
message = ChatMessage(
role="user",
content=content,
additional_kwargs={"images": [document]},
)
elif settings.llm_name == "OpenAI" or settings.llm_name == "OpenAILike":
message = generate_openai_multi_modal_chat_message(
prompt=content,
role="user",
image_documents=[document],
image_detail="auto",
)
else:
print("Unknown")
try:
if content.startswith("/q ") and self.rag:
if not self.rag.index:
displayError(Exception("No index found."))
return
message.content = message.content[3:]
self.messages.append(message)
wx.CallAfter(window.setStatus, "Processing with RAG...")
response = self.rag.ask(message.content)
else:
self.messages.append(message)
if settings.llm_name == "Gemini" and self.image:
self.messages = self.messages[-1:]
wx.CallAfter(window.setStatus, "Processing...")
response = Settings.llm.stream_chat(self.messages)
assistant_name = settings.model_name.capitalize()
if ":" in assistant_name:
assistant_name = assistant_name[: assistant_name.index(":")]
wx.CallAfter(window.response.AppendText, assistant_name + ": ")
self.generate = True
message = ""
sentence = ""
for chunk in response:
if not sentence:
wx.CallAfter(window.setStatus, "Typing...")
data = chunk
if not isinstance(chunk, str):
chunk = chunk.delta
message += chunk
if settings.speakResponse:
sentence += chunk
if re.search(r"[\.\?!\n]\s*$", sentence):
sentence = sentence.strip()
if sentence:
wx.CallAfter(window.speech.speak, sentence)
sentence = ""
wx.CallAfter(window.response.AppendText, chunk)
if not self.generate:
break
if sentence and settings.speakResponse:
wx.CallAfter(window.speech.speak, sentence)
wx.CallAfter(window.response.AppendText, os.linesep)
if settings.show_context and content.startswith("/q ") and self.rag:
nodes = self.rag.response.source_nodes
for i in range(len(nodes)):
text = nodes[i].text
text = re.sub(r"\n+", "\n", text)
wx.CallAfter(
window.response.AppendText,
f"----------{os.linesep}Context {i+1} similarity score: {nodes[i].score:.2f}\n{text}{os.linesep}",
)
if (
isinstance(data, ChatResponse)
and hasattr(data, "raw")
and "total_duration" in data.raw
):
data = data.raw
div = 1000000000
total = data["total_duration"] / div
load = data["load_duration"] / div
prompt_count = (
data["prompt_eval_count"] if "prompt_eval_count" in data else 0
)
prompt_duration = data["prompt_eval_duration"] / div
gen_count = data["eval_count"]
gen_duration = data["eval_duration"] / div
stat = f"Total: {total:.2f} seconds, Load: {load:.2f} seconds, Prompt Processing: {prompt_count} tokens ({prompt_count/prompt_duration:.2f} tokens/second), Text Generation: {gen_count} tokens ({gen_count/gen_duration:.2f} tokens/second)"
wx.CallAfter(window.setStatus, stat)
elif self.token_counter.total_llm_token_count:
status_message = f"Embedding Tokens: {self.token_counter.total_embedding_token_count}, LLM Prompt Tokens: {self.token_counter.prompt_llm_token_count}, LLM Completion Tokens: {self.token_counter.completion_llm_token_count}, Total LLM Token Count {self.token_counter.total_llm_token_count}"
wx.CallAfter(window.setStatus, status_message)
else:
wx.CallAfter(window.setStatus, "Finished")
if self.image:
self.messages[-1] = ChatMessage(role="user", content=content)
self.messages.append(ChatMessage(role="assistant", content=message.strip()))
except Exception as e:
self.messages.pop()
displayError(e)
finally:
self.generate = False
self.image = None
self.document = None
self.documentURL = None
Settings.callback_manager = CallbackManager([])
wx.CallAfter(window.onStopGeneration)