|
| 1 | +import torch as T |
| 2 | +import torch.nn as nn |
| 3 | +from bagoftools.namespace import Namespace |
| 4 | + |
| 5 | + |
| 6 | +def get_embeddings(config: Namespace) -> nn.Embedding: |
| 7 | + emb = nn.Embedding(len(config.lang), config.emb_size, |
| 8 | + padding_idx=config.lang.pad_idx) |
| 9 | + |
| 10 | + if config.load_pretrained_emb: |
| 11 | + assert config.lang.emb_matrix is not None |
| 12 | + emb.weight = nn.Parameter( |
| 13 | + T.tensor(config.lang.emb_matrix, dtype=T.float32)) |
| 14 | + emb.weight.requires_grad = False |
| 15 | + |
| 16 | + return emb |
| 17 | + |
| 18 | + |
| 19 | +class Model(nn.Module): |
| 20 | + def __init__(self, config: Namespace, model_type): |
| 21 | + """ |
| 22 | + :param model_type: cs / cg |
| 23 | + cs: code -> anno |
| 24 | + cg: anno -> code |
| 25 | + """ |
| 26 | + super(Model, self).__init__() |
| 27 | + |
| 28 | + assert model_type in ['cs', 'cg'] |
| 29 | + self.model_type = model_type |
| 30 | + |
| 31 | + src_cfg = config.anno if model_type == 'cg' else config.code |
| 32 | + tgt_cfg = config.code if model_type == 'cg' else config.anno |
| 33 | + |
| 34 | + # 1. ENCODER |
| 35 | + self.src_embedding = get_embeddings(src_cfg) |
| 36 | + self.encoder = nn.LSTM(input_size=src_cfg.emb_size, |
| 37 | + hidden_size=src_cfg.lstm_hidden_size, |
| 38 | + dropout=src_cfg.lstm_dropout_p, |
| 39 | + bidirectional=True, |
| 40 | + batch_first=True) |
| 41 | + |
| 42 | + self.decoder_cell_init_linear = nn.Linear(in_features=2*src_cfg.lstm_hidden_size, |
| 43 | + out_features=tgt_cfg.lstm_hidden_size) |
| 44 | + |
| 45 | + # 2. ATTENTION |
| 46 | + # project source encoding to decoder rnn's h space (W from Luong score general) |
| 47 | + self.att_src_W = nn.Linear(in_features=2*src_cfg.lstm_hidden_size, |
| 48 | + out_features=tgt_cfg.lstm_hidden_size, |
| 49 | + bias=False) |
| 50 | + |
| 51 | + # transformation of decoder hidden states and context vectors before reading out target words |
| 52 | + # this produces the attentional vector in (W from Luong eq. 5) |
| 53 | + self.att_vec_W = nn.Linear(in_features=2*src_cfg.lstm_hidden_size + tgt_cfg.lstm_hidden_size, |
| 54 | + out_features=tgt_cfg.lstm_hidden_size, |
| 55 | + bias=False) |
| 56 | + |
| 57 | + # 3. DECODER |
| 58 | + self.tgt_embedding = get_embeddings(tgt_cfg) |
| 59 | + self.decoder = nn.LSTMCell(input_size=tgt_cfg.emb_size + tgt_cfg.lstm_hidden_size, |
| 60 | + hidden_size=tgt_cfg.lstm_hidden_size) |
| 61 | + |
| 62 | + # prob layer over target language |
| 63 | + self.readout = nn.Linear(in_features=tgt_cfg.lstm_hidden_size, |
| 64 | + out_features=len(tgt_cfg.lang), |
| 65 | + bias=False) |
| 66 | + |
| 67 | + self.dropout = nn.Dropout(tgt_cfg.att_dropout_p) |
| 68 | + |
| 69 | + # 4. COPY MECHANISM |
| 70 | + self.copy_gate = ... # TODO |
| 71 | + |
| 72 | + # save configs |
| 73 | + self.src_cfg = src_cfg |
| 74 | + self.tgt_cfg = tgt_cfg |
| 75 | + |
| 76 | + def forward(self, src, tgt): |
| 77 | + """ |
| 78 | + src: bs, max_src_len |
| 79 | + tgt: bs, max_tgt_len |
| 80 | + """ |
| 81 | + enc_out, (h0_dec, c0_dec) = self.encode(src) |
| 82 | + scores, att_mats = self.decode(enc_out, h0_dec, c0_dec, tgt) |
| 83 | + |
| 84 | + return scores, att_mats |
| 85 | + |
| 86 | + def encode(self, src): |
| 87 | + """ |
| 88 | + src : bs x max_src_len (emb look-up indices) |
| 89 | + out : bs x max_src_len x 2*hid_size |
| 90 | + h/c0: bs x tgt_hid_size |
| 91 | + """ |
| 92 | + emb = self.src_embedding(src) |
| 93 | + out, (hn, cn) = self.encoder(emb) # hidden is zero by default |
| 94 | + |
| 95 | + # construct initial state for the decoder |
| 96 | + c0_dec = self.decoder_cell_init_linear(T.cat([cn[0], cn[1]], dim=1)) |
| 97 | + h0_dec = c0_dec.tanh() |
| 98 | + |
| 99 | + return out, (h0_dec, c0_dec) |
| 100 | + |
| 101 | + def decode(self, src_enc, h0_dec, c0_dec, tgt): |
| 102 | + """ |
| 103 | + src_enc: bs, max_src_len, 2*hid_size (== encoder output) |
| 104 | + h/c0 : bs, tgt_hid_size |
| 105 | + tgt : bs, max_tgt_len (emb look-up indices) |
| 106 | + """ |
| 107 | + batch_size, tgt_len = tgt.shape |
| 108 | + scores, att_mats = [], [] |
| 109 | + |
| 110 | + hidden = (h0_dec, c0_dec) |
| 111 | + |
| 112 | + emb = self.tgt_embedding(tgt) # bs, max_tgt_len, tgt_emb_size |
| 113 | + |
| 114 | + att_vec = T.zeros( |
| 115 | + batch_size, self.tgt_cfg.lstm_hidden_size, requires_grad=False) |
| 116 | + if CFG.cuda: |
| 117 | + att_vec = att_vec.cuda() |
| 118 | + |
| 119 | + # Luong W*hs: same for each timestep of the decoder |
| 120 | + src_enc_att = self.att_src_W(src_enc) # bs, max_src_len, tgt_hid_size |
| 121 | + |
| 122 | + for t in range(tgt_len): |
| 123 | + emb_t = emb[:, t, :] |
| 124 | + x = T.cat([emb_t, att_vec], dim=-1) |
| 125 | + h_t, c_t = self.decoder(x, hidden) |
| 126 | + |
| 127 | + ctx_t, att_mat = self.luong_attention(h_t, src_enc, src_enc_att) |
| 128 | + |
| 129 | + # Luong eq. (5) |
| 130 | + att_t = self.att_vec_W(T.cat([h_t, ctx_t], dim=1)) |
| 131 | + att_t = att_t.tanh() |
| 132 | + att_t = self.dropout(att_t) |
| 133 | + |
| 134 | + # Luong eq. (6) |
| 135 | + score_t = self.readout(att_t) |
| 136 | + score_t = F.softmax(score_t, dim=-1) |
| 137 | + |
| 138 | + scores += [score_t] |
| 139 | + att_mats += [att_mat] |
| 140 | + |
| 141 | + # for next state t+1 |
| 142 | + att_vec = att_t |
| 143 | + hidden = (h_t, c_t) |
| 144 | + |
| 145 | + # bs, max_tgt_len, tgt_vocab_size |
| 146 | + scores = T.stack(scores).permute((1, 0, 2)) |
| 147 | + |
| 148 | + # each element: bs, max_src_len, max_tgt_len |
| 149 | + att_mats = T.cat(att_mats, dim=1) |
| 150 | + |
| 151 | + return scores, att_mats |
| 152 | + |
| 153 | + def luong_attention(self, h_t, src_enc, src_enc_att, mask=None): |
| 154 | + """ |
| 155 | + h_t : bs, hid_size |
| 156 | + src_enc (hs) : bs, max_src_len, 2*src_hid_size |
| 157 | + src_enc_att (W*hs): bs, max_src_len, tgt_hid_size |
| 158 | + mask : bs, max_src_len |
| 159 | +
|
| 160 | + ctx_vec : bs, 2*src_hid_size |
| 161 | + att_weight : bs, max_src_len |
| 162 | + att_mat : bs, 1, max_src_len |
| 163 | + """ |
| 164 | + |
| 165 | + # bs x src_max_len |
| 166 | + score = T.bmm(src_enc_att, h_t.unsqueeze(2)).squeeze(2) |
| 167 | + |
| 168 | + if mask: |
| 169 | + score.data.masked_fill_(mask, -np.inf) |
| 170 | + |
| 171 | + att_mat = score.unsqueeze(1) |
| 172 | + att_weights = F.softmax(score, dim=-1) |
| 173 | + |
| 174 | + # sum per timestep |
| 175 | + ctx_vec = T.sum(att_weights.unsqueeze(2) * src_enc, dim=1) |
| 176 | + |
| 177 | + return ctx_vec, att_mat |
| 178 | + |
| 179 | + def beam_search(self, src, width=3): |
| 180 | + """ |
| 181 | + Choose most probable sequence, considering top `width` candidates. |
| 182 | + """ |
| 183 | + |
| 184 | + hyp = [] |
| 185 | + |
| 186 | + batch_size, src_len = src.shape |
| 187 | + enc_out, (h0_dec, c0_dec) = self.encode(src) |
| 188 | + |
| 189 | + scores, att_mats = [], [] |
| 190 | + |
| 191 | + hidden = (h0_dec, c0_dec) |
| 192 | + |
| 193 | + att_vec = T.zeros( |
| 194 | + batch_size, self.tgt_cfg.lstm_hidden_size, requires_grad=False).cuda() |
| 195 | + |
| 196 | + # Luong W*hs: same for each timestep of the decoder |
| 197 | + src_enc_att = self.att_src_W(src_enc) # bs, max_src_len, tgt_hid_size |
| 198 | + |
| 199 | + for t in range(tgt_len): |
| 200 | + emb_t = self.tgt_embedding(hyp[-1]) |
| 201 | + x = T.cat([emb_t, att_vec], dim=-1) |
| 202 | + h_t, c_t = self.decoder(x, hidden) |
| 203 | + |
| 204 | + ctx_t, att_mat = self.luong_attention(h_t, src_enc, src_enc_att) |
| 205 | + |
| 206 | + att_t = F.tanh(self.att_vec_W(T.cat([h_t, ctx_t], dim=1))) |
| 207 | + # att_t = self.dropout(att_t) |
| 208 | + |
| 209 | + score_t = F.softmax(self.readout(att_t), dim=-1) |
| 210 | + |
| 211 | + scores += [score_t] |
| 212 | + att_mats += [att_mat] |
| 213 | + |
| 214 | + # for next state t+1 |
| 215 | + att_vec = att_t |
| 216 | + hidden = (h_t, c_t) |
| 217 | + |
| 218 | + # bs, max_tgt_len, tgt_vocab_size |
| 219 | + scores = T.stack(scores).permute((1, 0, 2)) |
| 220 | + |
| 221 | + # each element: bs, max_src_len, max_tgt_len |
| 222 | + att_mats = T.cat(att_mats, dim=1) |
| 223 | + |
| 224 | + return hyp |
| 225 | + |
| 226 | + |
| 227 | +def JSD(a, b, mask=None): |
| 228 | + eps = 1e-8 |
| 229 | + |
| 230 | + assert a.shape == b.shape |
| 231 | + _, n, _ = a.shape |
| 232 | + |
| 233 | + xa = F.softmax(a, dim=2) + eps |
| 234 | + xb = F.softmax(b, dim=2) + eps |
| 235 | + |
| 236 | + # common, averaged dist |
| 237 | + avg = 0.5 * (xa + xb) |
| 238 | + |
| 239 | + # kl |
| 240 | + xa = T.sum(xa * T.log(xa / avg), dim=2) |
| 241 | + xb = T.sum(xb * T.log(xb / avg), dim=2) |
| 242 | + |
| 243 | + # js |
| 244 | + xa = T.sum(xa, dim=1) / n |
| 245 | + xb = T.sum(xb, dim=1) / n |
| 246 | + |
| 247 | + return 0.5 * (xa + xb) |
0 commit comments