-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path3.main_algorithm.py
124 lines (86 loc) · 3 KB
/
3.main_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import matplotlib.pyplot as pl
import math
import pickle
f=open("sample_data","rb")
X=pickle.load(f)
f.close()
f=open("sample_output","rb")
y=pickle.load(f)
f.close()
print(y)
X=X/1000.0
print(X)
# f=open("theta","rb")
# theta=pickle.load(f)
# f.close()
#pl.plot(theta,'ro')
#pl.show()
features=3
X=np.insert(X,0,[1],axis=1) #input trained
y=np.array(y) #output trained
m=247 #No of examples
alpha=2 #learning rate
theta=np.array([0]*int(features+1)).reshape(int(features+1),1) #initializing theta
def sigmoid(z):
den = 1.0 + np.e ** (-1.0 * z)
d = 1.0 / den
#print(d)
return d
def cost(theta):
sigmoid_value=X.dot(theta)
#print(sigmoid_value)
# value1=sigmoid(sigmoid_value)
# value2=np.log(sigmoid(sigmoid_value))
# value3= 1-sigmoid(sigmoid_value)
# value4=np.log( 1-sigmoid(sigmoid_value))
#
# print("value1:",value1)
# print("value2",value2)
# print("value3",value3)
# print("value4",value4)
J=(-1./m)*np.sum((y*(np.log(sigmoid(sigmoid_value))) + (1-y)*np.log( 1-sigmoid(sigmoid_value)) ))
return J
def gradient_descent(X):
grad=np.zeros((features+1,1),dtype=float) #array of new_gradient generated thetas
new_x=[0]*int(features+1) #array for formatting X
for i in range(features+1): #X formatted as 1*66 elements of each column changed to 66*1
new_x[i]=np.array(X[:,i]).reshape(m,1) #for simplifying multiplication
#print((sigmoid(X.dot(grad))-y))
#print(new_x[1])
#theta_new=np.zeros((2501,1),dtype=float)
theta_new=theta
count=0
for i in range(200000):
for j in range(features+1):
grad[j]=theta_new[j]-alpha*((1./m)*np.sum((sigmoid(X.dot(theta_new))-y)*new_x[j]))
theta_new=grad
#print(theta_new[1],theta_new[2],theta_new[3])
count+=1
#print(count)
# if(i==10000):
# pl.plot(X.dot(theta_new))
# pl.show()
# if(i==20000):
# pl.plot(X.dot(theta_new))
# pl.show()
# if(i==30000):
# pl.plot(X.dot(theta_new))
# pl.show()
# if(i==40000):
# pl.plot(X.dot(theta_new))
# pl.show()
return grad
print("cost function")
J=cost(theta)
print(J)
print("gradient descent")
grad=gradient_descent(X)
print(grad)
print("cost function")
J=cost(grad)
print(J)
f=open("theta","wb")
pickle.dump(grad,f)
f.close()
print("successfull")