-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
228 lines (189 loc) · 9.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#Torch
import torch
from torch import nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
#Utils
import argparse
from tqdm import tqdm
import time
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime
import csv
import os
import time
import argparse
from tqdm import tqdm
from utils import utils, dataset, probability_metrics
from models import lstm_attention
import pytorch_warmup as warmup
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_path', default='data/diginetica/', help='dataset directory path: data/diginetica/yoochoose1_4/yoochoose1_64')
parser.add_argument('--batch_size', type=int, default=256, help='input batch size')
parser.add_argument('--hidden_size', type=int, default=60, help='hidden state size of gru module')
parser.add_argument('--heads', type=int, default=2, help='num of heads')
parser.add_argument('--embed_dim', type=int, default=50, help='the dimension of item embedding')
parser.add_argument('--epoch', type=int, default=50, help='the number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--lr_dc', type=float, default=0.1, help='learning rate decay rate') #lr * lr_dc
parser.add_argument('--lr_dc_step', type=int, default=45, help='the number of steps after which the learning rate decay')
parser.add_argument('--topk', type=int, default=20, help='number of top score items selected for calculating recall and mrr metrics')
parser.add_argument('--valid_portion', type=float, default=0.1, help='split the portion of training set as validation set')
parser.add_argument('--max_len', type=int, default=20, help='max length of sequence')
args = parser.parse_args()
print(args)
torch.manual_seed(522)
np.random.seed(522)
here = os.path.dirname(os.path.abspath(__file__))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.dataset_path.split('/')[-2] == 'diginetica':
datasetname = 'diginetica'
datasetname1 = 'diginetica'
n_items = 43098
elif args.dataset_path.split('/')[-2] in 'yoochoose1_64':
datasetname = 'yoochoose164'
datasetname1 = 'yoochoose1_64'
n_items = 37484
elif args.dataset_path.split('/')[-2] in 'yoochoose1_4':
datasetname = 'yoochoose14'
datasetname1 = 'yoochoose1_4'
n_items = 37484
else:
raise Exception('Unknown Dataset!')
MODEL_VARIATION = datasetname + "_LSTM_ATT_"
def main():
print(f'Loading data for dataset {args.dataset_path} and model variation {MODEL_VARIATION}!')
train, valid, test = dataset.load_data(args.dataset_path, valid_portion=args.valid_portion, maxlen=args.max_len)
train_data = dataset.RecSysDataset(train)
valid_data = dataset.RecSysDataset(valid)
test_data = dataset.RecSysDataset(test)
train_loader = DataLoader(train_data, batch_size = args.batch_size, shuffle = True, collate_fn=lambda data: utils.collate_fn(data, max_len=args.max_len))
valid_loader = DataLoader(valid_data, batch_size = args.batch_size, shuffle = False, collate_fn=lambda data: utils.collate_fn(data, max_len=args.max_len))
test_loader = DataLoader(test_data, batch_size = args.batch_size, shuffle = False, collate_fn=lambda data: utils.collate_fn(data, max_len=args.max_len))
model = lstm_attention.LSTMAttentionModel(n_items,
args.hidden_size,
args.embed_dim,
args.batch_size,
num_heads=args.heads).to(device)
optimizer = optim.Adam(params=model.parameters(),
lr=args.lr)
# optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, betas=(0.9, 0.999)) #, weight_decay=0.01
# num_steps = len(train_loader) * args.epoch
# lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_steps)
# warmup_scheduler = warmup.UntunedLinearWarmup(optimizer)
criterion = nn.CrossEntropyLoss()
# scheduler = StepLR(optimizer,
# step_size = args.lr_dc_step,
# gamma = args.lr_dc)
early_stopper = utils.EarlyStopper(patience=5,
min_delta=10)
# Info
losses, valid_losses = [], []
valid_recall, valid_mrr, valid_hit = 0,0,0
best_recall, best_mrr, best_hit, best_epoch = 0,0,0,0
best_valid_loss = float('inf')
now = datetime.now()
now_time = time.time()
timestamp = now.strftime("%d_%m_%Y_%H:%M:%S")
for epoch in tqdm(range(args.epoch)):
# Train warmup_scheduler, lr_scheduler,
epoch_loss = trainForEpoch(train_loader, model, optimizer, epoch, args.epoch, criterion, log_aggr = 200)
losses.append(epoch_loss)
# Validation
valid_recall, valid_mrr, valid_hit, valid_loss = validate(valid_loader, model, criterion)
valid_losses.append(valid_loss)
print(f"Epoch {epoch} validation: Recall@20: {valid_recall:.4f}, MRR@20: {valid_mrr:.4f}, HIT@20: {valid_hit:.4f}, Validation loss: {valid_loss:.4f} \n")
# Checkpoint
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
best_recall, best_mrr, best_hit, best_epoch = valid_recall, valid_mrr, valid_hit, epoch
ckpt_dict = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(ckpt_dict, 'checkpoints/'+MODEL_VARIATION+'latest_checkpoint_'+timestamp+'.pth.tar')
torch.save(model.embedding.weight.data, 'embeddings/'+MODEL_VARIATION+'latest_checkpoint_'+timestamp+'.pth.tar')
# Patience
if early_stopper.early_stop(valid_loss):
print(f"Early stop in epoch {epoch}!")
break
# Plot losses
print('--------------------------------')
print('Plotting loss curve...')
plt.clf()
plt.plot(losses[1:], label='Training Loss')
plt.plot(valid_losses[1:], label='Validation Loss')
plt.title('Training/Validation Loss Over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.savefig('loss_curves/'+MODEL_VARIATION+'loss_curve_'+timestamp+'.png')
# Test model
ckpt = torch.load('checkpoints/'+MODEL_VARIATION+'latest_checkpoint_'+timestamp+'.pth.tar')
model.load_state_dict(ckpt['state_dict'])
test_recall, test_mrr, test_hit, _ = validate(test_loader, model, criterion)
print(f"Test: Recall@20: {test_recall:.4f}, MRR@20: {test_mrr:.4f}, HIT@20: {test_hit:.4f}, Best Epoch: {ckpt['epoch']}")
# Save metrics
model_unique_id = MODEL_VARIATION + timestamp
fields=[model_unique_id, test_recall, test_mrr, test_hit,timestamp,(time.time() - now_time),valid_recall, valid_mrr, valid_hit, args.lr, args.hidden_size, args.batch_size, args.embed_dim, datasetname, args.epoch, args.topk, args.max_len, best_recall, best_mrr, best_hit, best_epoch]
with open(r'stats/data.csv', 'a') as f:
writer = csv.writer(f)
writer.writerow(fields)
def trainForEpoch(train_loader, model, optimizer, epoch, num_epochs, criterion, log_aggr=1): #warmup_scheduler, lr_scheduler,
model.train()
sum_epoch_loss = 0
start = time.time()
for i, (seq, target, lens) in tqdm(enumerate(train_loader), total=len(train_loader)):
seq = seq.to(device)
target = target.to(device)
if (torch.any(torch.isnan(seq)))|(torch.any(torch.isnan(target))):
print("NaN values found in", epoch, i)
break
optimizer.zero_grad()
outputs = model(seq, lens)
loss = criterion(outputs, target)
loss.backward()
if (torch.any(torch.isnan(seq)))|(torch.any(torch.isnan(target)))|(torch.any(torch.isnan(loss))):
print("NaN values found in", epoch, i)
break
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) # Gradient clipping
optimizer.step()
# with warmup_scheduler.dampening():
# #print('stepping')
# lr_scheduler.step()
loss_val = loss.item()
sum_epoch_loss += loss_val
#iter_num = epoch * len(train_loader) + i + 1
if i % log_aggr == 0:
print(f"[TRAIN] epoch {epoch + 1}/{num_epochs} batch loss: {loss_val:.4f} (avg {sum_epoch_loss / (i + 1):.4f}) ({len(seq) / (time.time() - start):.2f} im/s)")
start = time.time()
epoch_loss = sum_epoch_loss/len(train_loader)
return epoch_loss
def validate(valid_loader, model, criterion):
model.eval()
sum_valid_loss = 0
recalls, mrrs, hits = [], [], []
with torch.no_grad():
for seq, target, lens in tqdm(valid_loader):
seq = seq.to(device)
target = target.to(device)
outputs = model(seq, lens)
# Validation loss
loss = criterion(outputs, target)
sum_valid_loss += loss.item()
# Metrics
logits = F.softmax(outputs, dim = 1)
recall, mrr, hit = probability_metrics.evaluate(logits, target, k = args.topk)
recalls.append(recall)
mrrs.append(mrr)
hits.append(hit)
mean_recall = np.mean(recalls)
mean_mrr = np.mean(mrrs)
mean_hit = np.mean(hit)
loss = sum_valid_loss/len(valid_loader)
return mean_recall, mean_mrr, mean_hit, loss
if __name__ == '__main__':
main()