-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMPQS.sage
1045 lines (897 loc) · 32.1 KB
/
MPQS.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# Multiple polynomial Quadratic sieve
# Author Dario Clavijo 2021
# License: GPLv3
"""
The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice,
the second fastest method known (after the general number field sieve).
It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve.
It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored,
and not on special structure or properties.
It was invented by Carl Pomerance in 1981 as an improvement to Schroeppel's linear sieve
https://en.wikipedia.org/wiki/Quadratic_sieve
"""
import os
import time
import sys
from gmpy2 import gcd, gcdext, sqrt, isqrt, is_prime, next_prime, log2, log10, log, legendre, powmod, invert
from sage.parallel.multiprocessing_sage import parallel_iter
from multiprocessing import cpu_count, Pool, Manager
from itertools import repeat
import humanfriendly
from copy import *
def prebuilt_params(bits):
"""
Bounds estimation
borrowed from msieve/mpqs.c
"""
if bits <= 64:
return [100, 40, 1 * 65536]
if bits <= 128:
return [450, 40, 1 * 65536]
if bits <= 183:
return [2000, 40, 1 * 65536]
if bits <= 200:
return [3000, 50, 1 * 65536]
if bits <= 212:
return [5400, 50, 3 * 65536]
if bits <= 233:
return [10000, 100, 3 * 65536]
if bits <= 249:
return [27000, 100, 3 * 65536]
if bits <= 266:
return [50000, 100, 3 * 65536]
if bits <= 283:
return [55000, 80, 3 * 65536]
if bits <= 298:
return [60000, 80, 9 * 65536]
if bits <= 315:
return [80000, 150, 9 * 65536]
if bits <= 332:
return [100000, 150, 9 * 65536]
if bits <= 348:
return [140000, 150, 9 * 65536]
if bits <= 363:
return [210000, 150, 13 * 65536]
if bits <= 379:
return [300000, 150, 17 * 65536]
if bits <= 395:
return [400000, 150, 21 * 65536]
if bits <= 415:
return [500000, 150, 25 * 65536] # beyond this point you're crazy
if bits <= 440:
return [700000, 150, 33 * 65536]
if bits <= 465:
return [900000, 150, 50 * 65536]
if bits <= 490:
return [1100000, 150, 75 * 65536]
return [1300000, 150, 100 * 65536]
def choose_multiplier(n, prime_list):
"""
Code borrowed from msieve/mpqs.c
"""
mult_list = [1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38]
mult_list += [39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73]
MAX_MP_WORDS = 30
NUM_MULTIPLIERS=len(mult_list)
NUM_TEST_PRIMES = 300
i = j = 0
best_score = 0.0
best_mult = 0
scores = [0.0] * NUM_MULTIPLIERS
num_multipliers = 0
M_LN2 = log(2)
num_primes = len(prime_list)
""" measure the contribution of 2 as a factor of sieve
values. The multiplier itself must also be taken into
account in the score. scores[i] is the correction that
is implicitly applied to the size of sieve values for
multiplier i; a negative score makes sieve values
smaller, and so is better """
for i in range(0, NUM_MULTIPLIERS):
curr_mult = mult_list[i]
knmod8 = (curr_mult * n) % 8
logmult = log(curr_mult)
# only consider multipliers k such than
# k*n will not overflow an mp_t */
scores[i] = 0.5 * logmult;
if knmod8 == 1:
scores[i] -= 2 * M_LN2;
break
if knmod8 == 5:
scores[i] -= M_LN2;
break;
if knmod8 in [3, 7]:
scores[i] -= 0.5 * M_LN2;
break;
# even multipliers start with a handicap
num_multipliers = i;
# for the rest of the small factor base primes
for i in range (1, num_primes):
prime = int(prime_list[i])
contrib = log(prime) / (prime - 1);
modp = n % prime
for j in range(0, num_multipliers):
curr_mult = mult_list[j];
knmodp = (curr_mult * modp) % prime
# if prime i is actually in the factor base
# for k * n ... */
if knmodp == 0:
""" ...add its contribution. A prime p con-
tributes log(p) to 1 in p sieve values, plus
log(p) to 1 in p^2 sieve values, etc. The
average contribution of all multiples of p
to a random sieve value is thus
log(p) * (1/p + 1/p^2 + 1/p^3 + ...)
= (log(p) / p) * 1 / (1 - (1/p))
= log(p) / (p-1)
This contribution occurs once for each
square root used for sieving. There are two
roots for each factor base prime, unless
the prime divides k*n. In that case there
is only one root """
scores[j] -= contrib
elif legendre(knmodp, prime) == 1:
""" ...add its contribution. A prime p con-
tributes log(p) to 1 in p sieve values, plus
log(p) to 1 in p^2 sieve values, etc. The
average contribution of all multiples of p
to a random sieve value is thus
log(p) * (1/p + 1/p^2 + 1/p^3 + ...)
= (log(p) / p) * 1 / (1 - (1/p))
= log(p) / (p-1)
This contribution occurs once for each
square root used for sieving. There are two
roots for each factor base prime, unless
the prime divides k*n. In that case there
is only one root """
scores[j] -= contrib if (knmodp == 0) else 2 * contrib
# use the multiplier that generates the best score
best_score = 1000.0
best_mult = 1
#print(scores)
for i in range(0, num_multipliers):
score = scores[i];
if (score < best_score):
best_score = score
best_mult = mult_list[i]
return best_mult;
def mod_sqrt(n, p):
"""
Tonelli shanks algorithm
"""
a = n % p
if p % 4 == 3:
return pow(a, (p+1) >> 2, p)
elif p % 8 == 5:
v = pow(a << 1, (p-5) >> 3, p)
i = ((a*v*v << 1) % p) - 1
return (a*v*i) % p
elif p % 8 == 1: # Shank's method
q, e = p-1, 0
while q & 1 == 0:
e += 1
q >>= 1
n = 2
while legendre(n, p) != -1:
n += 1
w, x, y, r = pow(a, q, p), pow(a, (q+1) >> 1, p), pow(n, q, p), e
while True:
if w == 1:
return x
v, k = w, 0
while v != 1 and k+1 < r:
v = (v*v) % p
k += 1
if k == 0:
return x
d = pow(y, 1 << (r-k-1), p)
x, y = (x*d) % p, (d*d) % p
w, r = (w*y) % p, k
else:
return a # p == 2
def trial_division(n, P):
"""
A simple trial division, factors are given by P-list.
"""
a = []
r = n
l = len(P)
i = 0
for p in P:
if r < p:
break
if r % p == 0:
pw = 0
while r % p == 0:
pw += 1
r //= p
a.append((int(p),int(pw)))
return a,r,n
def merge_powers(ppws):
"""
Merge powers such that: (a^b) * (a^c) == a^(b+c)
"""
d = {}
for p,pw in ppws:
if p not in d:
d[p] = pw
else:
d[p] += pw
return list(d.items())
def filter_out_even_powers(ppws):
"""
Same as merge but Filter out even powers.
"""
d = {}
for p,pw in ppws:
if p not in d:
d[p] = pw
else:
d[p] += pw
return [p for p, value in d.items() if value & 1 != 0]
def trial_division_minus_even_powers(n, P):
"""
Factor a composite n returning only odd power primes.
"""
a, r, n = trial_division(n, P)
a = filter_out_even_powers(a)
return [a,r,n]
def is_smooth(x, P):
"""
check if n is B-smooth.
"""
y = x
for p in P:
while y % p ==0:
y //= p
return abs(y) == 1
def is_power(n, primes):
"""
Given a interger n and a set of primes it checks if n is a perfect power.
"""
ispow = False
c = 0
for p in primes:
a = log(n) / log(p)
b = int(a)
if a == b:
ispow = True
c = b
return ispow
def is_power_logprime(n, log_primes):
"""
Given the precomputed logs of a set of primes
we can test if a number n is a perfect power of that prime.
"""
for p in log_primes:
a = log(n) / p
b = int(a)
if a == b:
iwpow = True
return False
def minifactor4(x, P, smooth_base):
"""
Minifactor.
"""
x = abs(x)
a1 = []
smooth = gcd(x, smooth_base)
if smooth > 1:
not_smooth = x // smooth
a1, r1, n1 = trial_division(smooth, P)
a2, r2, n2 = trial_division(not_smooth, P)
else:
a2, r2, n2 = trial_division(x, P)
return merge_powers(a1 + a2), r2, x
class Poly:
"""
Quadratic polynomial helper class:
type Ax + 2Bx + C
"""
def __init__(self, n, P, x_max, search = 0, verbose = None, logp = None, A = None, B = None, C = None):
self.n = int(n)
self.P = P
self.logp = logp
self.x_max = x_max
self.search = search
self.verbose = verbose
#self.counter = 0
self.early_factors = []
if A is None and B is None and C is None:
self.create()
else:
print("given poly parameters: %d %d %d" % (A,B,C))
self.A = A
self.B = B
self.C = C
root_2n = isqrt(2 * self.n)
root_A = next_prime(isqrt(root_2n // x_max))
self.root_A = root_A
self.solve_for_x()
def create(self):
"""
Construct our polynomial.
Code borrowed from
https://github.com/elliptic-shiho/primefac-fork/blob/master/_primefac/_factor_algo/_mpqs.py
"""
n = self.n
x_max = self.x_max
root_2n = isqrt(2*n)
root_A = next_prime(isqrt(root_2n // x_max))
self.root_A = root_A
s=0
leg = 2
while True:
leg = legendre(n, root_A)
if leg == 1:
if s > self.search:
break
elif leg == 0:
self.early_factors.append(root_A)
if s > self.search:
break
#break
s += 1
root_A = next_prime(root_A + s)
self.s = s
A = int(pow(root_A, 2))
# solve for an adequate B. B*B is a quadratic residue mod n,
# such that B*B-A*C = n. this is unsolvable if n is not a
# quadratic residue mod sqrt(A)
b = int(mod_sqrt(n, root_A))
B = int(b + (n - pow(b, 2)) * powmod((b * 2), (root_A-2) ,root_A)) % A
C = int((pow(B, 2) - n) // A) # B*B-A*C = n <=> C = (B*B-n)//A
assert (B * B) - (A * C) == n
assert C == ((B * B) - n) // A
self.A = A
self.B = B
self.C = C
if self.verbose:
m = "New poly: f(x) = %dx^2 + %dx + %d\n" % (A,B,C)
sys.stderr.write(m.replace("+ -","-"))
return A, B, C
def solve_for_x(self):
"""
Get the minima of the polynomial where y=f(x) is a guaranteed relation.
Code borrowed https://github.com/cramppet/quadratic-sieve/blob/master/QS.py
"""
A = self.A
C = self.C
n = self.n
p = self.root_A
if A > 1:
g = 1
ainv = 1
B = self.B
while g == 1:
p = next_prime(p)
if A != 1:
g, inv, _ = gcdext(A, p)
if g != 1:
r1 = mod_sqrt(C, p)
r2 = (-1 * r1) % p
start1 = (ainv * (r1 - B)) % p
start2 = (ainv * (r2 - B)) % p
self.X = [int(start1), int(start2)]
self.minima = sum(self.X)//2
elif A == 1:
i = isqrt(abs(C))
self.X = [-i,i]
self.minima = 0
def eval(self, x):
"""
Eval the poly: y=f(x), return y and radical (Ax+B).
"""
A = self.A
B = self.B
C = self.C
Ax = A * x
Rad = Ax + B
y = (Rad + B) * x + C
return y, Rad, x # same as (Ax + 2B)x + C
def __repr__(self):
"""
Return the string representation of the constructed polynomial
"""
m = "F(X) = %d X ^ 2 + %d X + %d with minima: %d" % (self.A, self.B, self.C, self.minima)
return m.replace("+ -","- ")
def __add__(self, other):
"""
Adds one polynomial to other
"""
if isinstance(other, Poly):
if self.n == other.n and self.x_max == olther.x_max:
A, B, C = self.A + other.A, self.B + other.B, self.C + other.C
return Poly(self.n, self.x_max, search = None, A = A, B = B, C = C)
else:
return NotImplemented
def __sub__(self, other):
"""
Substracts one polynomial to other
"""
if isinstance(other, Poly):
if self.n == other.n and self.x_max == olther.x_max:
A, B, C = self.A - other.A, self.B - other.B, self.C - other.C
return Poly(self.n, self.x_max, search = None, A = A, B = B, C = C)
else:
return NotImplemented
def __mul__(self, other):
"""
Scalar multiply: scalar*(F(x))
"""
if isinstance(other, int):
A, B, C = self.A * other, self.B * other, self.C * other
return Poly(self.n, self.x_max, search = None, A = A, B = B, C = C)
else:
return NotImplemented
def __hash__(self):
"""
Hashes unique values of the polynomial to construct an python internal id.
"""
return hash("%d-%d-%d" % (self.A,self.B,self.C))
def __eq__(self, other):
"""
Internal python facility needed to check if two polynomials are the same.
"""
if isinstance(other, Poly):
return ((self.A == other.A) and (self.B == other.B) and (self.C == other.C))
else:
return NotImplemented
def compute_logs_y_sums(start, stop, P, log_primes, last_logp_table = []):
"""
Compute log table
"""
logs_y = copy(last_logp_table)
logs_y += [0] * (stop-start)
for j in range(len(P)):
p = P[j]
log_p = log_primes[j]
for i in range(0 , stop , p):
if i >= start:
logs_y[i] += log_p
return logs_y
def relations_find(taskid, N, start, stop, P, min_log_primes, log_primes, logs_y, smooth_base, Rels, merged_count, required_relations, cycleFactors, thresh, tasks, polycounts, polys = None):
"""
Relations search funcion
"""
#pid = os.getpid()
pid = taskid
tasks.value += 1
sys.stderr.write("[%d] relations_find: range(%d, %d), interval: %d sieving start, tresh: %f, pb: %d.\n" % (pid,start, stop, (stop-start), thresh,len(polys)))
pre_log_filter = True
merge = True
proc = noproc = 0
Found_Rels = []
st = time.time()
ltd = st
m = 1000
msg = ""
partials = {}
rels_found = 0
for poly in polys:
m = poly.minima
Diffs = [poly.eval(abs(x)) for x in range(start + m, stop +m)]
ld = len(Diffs)
A = poly.A
for i in range(ld):
if len(Rels) > required_relations or len(cycleFactors) > 0:
polycounts[poly] = (start,stop,rels_found)
break
y, Rad, x = Diffs[i]
y = abs(y)
if pre_log_filter:
candidate = (0 < logs_y[i] <= thresh and not is_prime(y))
else:
candidate = (y > P[0] and not is_prime(y) and not is_square(y) and not is_power_logprime(y, min_log_primes))
if candidate:
proc += 1
f = minifactor4(y, P, smooth_base)
if f != None:
if f[1] == 1: # Found a relation
rels_found += 1
filtered = filter_out_even_powers(f[0])
rel = [filtered, y, Rad, A]
if rel not in Rels:
Rels.append(rel)
elif merge and (f[1] in partials): # Found a partial, try to find a cycle
a = partials[f[1]]
p = filter_out_even_powers(f[0] + a[0])
Ahs = A * a[3]
lhs = Rad * a[2]
rhs = y * a[1]
LHS = Ahs + lhs
g = gcd(isqrt(LHS) - rhs, N)
if N > g > 1:
cycleFactors.append([g , N // g])
sys.stderr.write("Found cycle with partial\n")
else: # Cycle not found, merge
if merge:
rel = [p, rhs, lhs, Ahs]
if rel not in Rels:
Rels.append(rel)
rels_found += 1
#with merged_count.value.get_lock():
merged_count.value += 1
del partials[f[1]]
else:
if merge: # Didnt merge, store the partial for later merging
partials[f[1]] = [f[0], y, Rad, A]
else:
noproc += 1
if i % m == 0:
lRels = len(Rels)
lt = time.time()
td = lt - ltd
ltd = lt
if i > 0:
if lRels > 0:
eta = int(td * sqrt((ld / m)**2 + (required_relations / lRels)**2))
else:
eta = int(td * (ld / m))
etas = humanfriendly.format_timespan(eta)
else:
etas = "No ETA estimated"
tds = humanfriendly.format_timespan(td)
msg = "[%d] relations_find: range (%d, %d , %d), found: %d of %d, merged: %d, proc: %d, noproc: %d, iter_elapsed: %s, eta: %s, alive tasks: %d.\n"
msg = msg % (pid, start, i, ld, lRels, required_relations, merged_count.value, proc, noproc , tds, etas, tasks.value)
sys.stderr.write(msg)
polycounts[poly] = (start,stop,rels_found)
td = time.time() - st
tds = humanfriendly.format_timespan(td)
msg = "[%d] relations_find: Ended range(%d, %d, %d), found: %d of %d, merged: %d, proc: %d, noproc: %d, time elapsed: %s, alive tasks: %d.\n"
msg = msg % (pid, start,i,ld,len(Rels),required_relations, merged_count.value, proc, noproc, tds, tasks.value)
sys.stderr.write(msg)
tasks.value -= 1
return Found_Rels
def transpose(A):
"""
Transpose matrix so columns become rows
"""
new_A = []
for i in range(len(A[0])):
new_row = []
for row in A:
new_row.append(row[i])
new_A.append(new_row)
return(new_A)
def Gaussian_elimination_GF2(A):
"""
Gaussian elimination over GF2
https://www.cs.umd.edu/~gasarch/TOPICS/factoring/fastgauss.pdf, page2
"""
h = len(A)
m = len(A[0])
marks = [False] * h
for j in range(0,m):
for i in range(0,h):
if A[i][j] == 1:
marks[i] = True
for k in range(j+1,m):
if A[i][k] == 1:
A[i][k] = (A[i][j] + A[i][k]) % 2
break
return marks, A
def create_matrix(Rels, P):
"""
Create a matrix with the relations.
"""
M1 = []
for i in range(0,len(Rels)):
row = []
for j in range(0,len(P)):
if P[j] in Rels[i][0]:
row.append(1)
else:
row.append(0)
M1.append(row)
return M1
def left_nullspace(A):
"""
Compute left null space:
x such that xTA = 0T
"""
A = transpose(A)
marks, A = Gaussian_elimination_GF2(A)
#marks, A = gauss(A)
B = []
for row_index in range(0,len(A)):
if marks[row_index] == False:
B.append(A[row_index])
return B
def linear_algebra(Rels, P):
"""
Linear algebra, it generates a matrix in GF(2) then computes it's left null-space.
"""
M = matrix(GF(2), len(Rels), len(P), lambda i, j:P[j] in Rels[i][0])
return M.left_kernel().basis()
def process_basis_vectors(N, basis, Rels, multiplier = 1):
"""
Process each basis vector, construct (a^2)-(b^2) mod n congruence.
"""
for K in basis:
lhs = rhs = Ahs = 1
I = [f for f, k in zip(Rels, K) if k == 1]
if len(I) > 0:
for i in I:
lhs *= i[1] # left-hand side
rhs *= i[2] # rigth-hand side
Ahs *= i[3] # A-term in poly
LHS = Ahs * lhs
g = gcd(isqrt(abs(LHS))-rhs,N)
if N > g > 1:
factors = [int(g), int(N//g)]
if multiplier > 1:
tmp2 = []
for factor in factors:
ignoreme = gcd(factor,multiplier)
if r > ignoreme > 1:
tmp2.append(factor//ignoreme)
return tmp2
else:
return factors
def find_primebase(n, bound):
"""
Finds the base prime for given n and bound.
https://github.com/elliptic-shiho/primefac-fork/blob/master/_primefac/_factor_algo/_mpqs.py
Same as the sieve of erathostenes.
"""
print(n,bound)
primes, mod_root, log_p, num_prime, p = [], {}, {}, 0, 3
while num_prime <= bound:
leg = legendre(n % p, p)
if leg == 1:
primes += [p]
#mod_root[p] = mod_sqrt(n ,p)
log_p[p] = log10(p)
num_prime += 1
elif leg == 0:
return [p], None
p = next_prime(p)
return primes, log_p
def recalculate_min_prime_thresh(thresh, Prime_base, log_p):
"""
Recalculates the min efective prime base bound.
code borrowed from:
https://github.com/elliptic-shiho/primefac-fork/blob/master/_primefac/_factor_algo/_mpqs.py
"""
min_prime = int(thresh * 3)
fudge = sum(log_p[i] for i, p in enumerate(Prime_base) if p < min_prime)
fudge = fudge // 4
sys.stderr.write("min_prime: %d, fudge: %f, thresh: %f\n" % (min_prime,fudge, thresh))
thresh -= fudge
return min_prime, thresh, fudge
def generate_polys(N, Prime_base, x_max, needed, min_search = 0, polys=[]):
"""
It searchs for distinct needed polys congruent to n.
"""
n = min_search
cpolys = 0
early_factors = []
while cpolys <= needed:
pol = Poly(N, Prime_base, x_max, search = n, verbose=False)
if len(pol.early_factors) > 0:
for early_factor in pol.early_factors:
if early_factor not in early_factors:
early_factors.append(early_factor)
else:
if pol not in polys and pol.minima > 0:
m = repr(pol)
sys.stderr.write("New Poly %d: %s\n" % (cpolys,m))
polys.append(pol)
cpolys += 1
n += 1
return polys, early_factors
def getbestpolys(polys, polycounts, T):
"""
Experimental function, break things.
"""
tmp_polys = copy(polys)
new_polys = []
print("have polys: %d" % len(tmp_polys))
print(polys)
j = -1
while len(new_polys) < T:
max_poly_count = 0
for i in range(0,len(tmp_polys)):
poly = tmp_polys[i]
if poly in polycounts:
poly_count = polycounts[poly][2]
if poly_count > max_poly_count:
max_poly_count = poly_count
best_poly = poly
j = i
#if -1 < j < len(tmp_polys):
if -1 < j < len(tmp_polys):
print("new best poly: %s, j: %d, len: %d, count: %d" % (repr(poly),j,len(tmp_polys),max_poly_count))
new_polys.append(best_poly)
del tmp_polys[j]
else:
print(tmp_polys)
break
sys.stderr.write("Requested best_polys: %d, got: %d\n" % (T,len(new_polys)))
return new_polys
def poly_stats(polys, polycounts):
"""
Prints polynomials relations stats
"""
for poly in polys:
if poly in polycounts:
poly_count = polycounts[poly]
sys.stderr.write("For polynomial: %s the relations count is: %s\n" % (repr(poly),poly_count))
def unique(List, newlist):
"""
Creates a unique list of elements
"""
for element in List:
if element not in tmp:
newlist.append(element)
else:
print("repeated")
return newlist
def _MPQS(N, verbose=True, M = 5):
"""
Main MPQS function.
"""
if is_prime(N):
return [N], 0
bN, lN = int(log2(N)), len(str(N))
i2N = isqrt(N)
if pow(i2N,2) == N:
return [i2N, i2N],0
i2Np1 = i2N + 1
root_2n = isqrt(2*N)
Rels = []
T = cpu_count() * M
#T *= M
B2, _ , B1 = prebuilt_params(log2(N))
x_max = B1
m_val = (x_max * root_2n) >> 1
thresh = log10(m_val) * 0.735
min_prime = int(thresh * 3)
Prime_base, log_p = find_primebase(N, B2 + min_prime)
multiplier = choose_multiplier(N, Prime_base)
Nm = multiplier * N
required_relations = len(Prime_base)
if required_relations == 1:
sys.stderr.write("Found small factor: %d\n" % Prime_base[0])
r, polycount = _MPQS(N // Prime_base[0])
return Prime_base + r, polycount
sys.stderr.write("Factoring N: %d, bits: %d, digits: %d, B1: %d, B2: %d\n" % (N,bN,lN,B1,B2))
sys.stderr.write("Multiplier is: %d\n" % multiplier)
start = 0
stop = B1 # range to sieve
manager = Manager()
Rels = manager.list() # placeholder list for relations shareable between child processes.
newlist = manager.list()
cycleFactors = manager.list()
polycounts = manager.dict()
merged_count = manager.Value("i", 0)
tasks = manager.Value("i", 0)
min_poly_search = 0
polys = []
last_lRels = 0
force_new_polys = True
use_best = True
required_relations_ratio = 1.05
required_relations = int(required_relations * required_relations_ratio)
logs_y = []
while True:
# trim primes, recalc min
sys.stderr.write("Generating primebase and logprime table...\n")
min_log_primes = [log(p) for p in Prime_base if p <= min_prime]
filtered_Prime_base = [p for p in Prime_base if p > min_prime]
log_primes = [log(p) for p in Prime_base]
filtered_log_primes = [log(p) for p in filtered_Prime_base]
if stop > len(logs_y):
logs_y = compute_logs_y_sums(start, stop, filtered_Prime_base, filtered_log_primes, logs_y)
required_relations = int(required_relations * required_relations_ratio)
sys.stderr.write("Need %d relations\n" % (required_relations))
smooth_base = prod(Prime_base)
min_prime, thresh, fudge = recalculate_min_prime_thresh(thresh, filtered_Prime_base, log_p)
t1 = time.time()
sys.stderr.write("Data collection with %d threads...\n" % T)
lRels = len(Rels)
need_more_polys = not (lRels > last_lRels) or force_new_polys
need_more_polys = False
last_lRels = lRels
inputs = []
taskid = 1
# generate tasks parameters
if not need_more_polys:
if len(polys) > 0 and use_best:
sys.stderr.write("Using the best polys to get more relations...\n")
polys_new = getbestpolys(polys, polycounts, T)
polys_new += polys[0 - T:len(polys)]
else:
#polys_new = generate_polys(Nm, Prime_base, x_max, T, min_poly_search, polys)
sys.stderr.write("Need more polys...\n")
polys_new, early_factors = generate_polys(Nm, Prime_base, x_max, T, min_poly_search, polys) # generate n distinct polys one for each cpu core.
if len(early_factors) > 0:
tmp = 1
small = []
for early_factor in early_factors:
g = gcd(early_factor, N)
if N > g > 1:
tmp *= g
small.append(g)
if tmp > 1:
return small + MPQS(N // tmp), 0
min_poly_search += T
else:
polys_new = polys[0 - (T * M):len(polys)]
pb = M
for i in range(0, len(polys_new), pb):
polys_batch = polys_new[i : i + pb]
inputs += [(taskid, Nm, start, stop, filtered_Prime_base, min_log_primes, log_primes, logs_y, smooth_base, Rels, merged_count, required_relations, cycleFactors, thresh, tasks, polycounts, polys_batch)]
taskid += 1
for poly in polys_batch:
if poly not in polys:
poly.append(poly)
# deploy tasks to every cpu core.
pols = []
workpool = Pool(T)
with workpool:
R = workpool.starmap(relations_find, inputs)
workpool.close()
workpool.join()
t2 = time.time()
sys.stderr.write("Done in: %f secs.\n" % (t2-t1))
#sys.stderr.write("Found %d rels with %d base primes.\nSorting..." % (len(Rels),len(Prime_base)))
sys.stderr.write("Found %d rels with %d base primes.\n" % (len(Rels),len(Prime_base)))
if len(cycleFactors) > 0:
return cycleFactors, len(polys)
t3 = time.time()
#sys.stderr.write("Done in: %f secs.\n" % (t3-t2))
#sys.stderr.write("Unique rels after sort: %d \n" % (len(Rels)))
# when needed relations is reached proceed to do linear algebra
if len(Rels) > required_relations:
sys.stderr.write("Found %d enough relations of %d needed relations...\n" % (len(Rels),required_relations))
sys.stderr.write("Matrix creation...")
basis = linear_algebra(Rels, Prime_base) # calculate left nullspace of a GF(2) matrix.
t4 = time.time()
sys.stderr.write("Done in: %f secs.\n" % (t4-t3))
sys.stderr.write("Matrix reduction...")
result = process_basis_vectors(Nm, basis, Rels, multiplier)
t5 = time.time()
sys.stderr.write("Done in: %f secs.\n" % (t5-t4))
poly_stats(polys, polycounts)
if result != None: