-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfacthacks.sage
196 lines (164 loc) · 5.03 KB
/
facthacks.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# code taken from: https://facthacks.cr.yp.to/facthacks.sage
def greatestcommondivisor(x,y):
while x != 0: x,y = y%x,x
return abs(y)
# example:
print greatestcommondivisor(4187,5989)
# output: 53
# double check:
print gcd(4187,5989)
# output: 53
def product(X):
if len(X) == 0: return 1
while len(X) > 1:
X = [prod(X[i*2:(i+1)*2]) for i in range((len(X)+1)/2)]
return X[0]
# example:
print product([314,159,265,359,897])
# output: 4260489878970
# double check:
print 314*159*265*359*897
# output: 4260489878970
def producttree(X):
result = [X]
while len(X) > 1:
X = [prod(X[i*2:(i+1)*2]) for i in range((len(X)+1)/2)]
result.append(X)
return result
# example:
print producttree([10,20,30,40,50,60])
# output: [[10, 20, 30, 40, 50, 60], [200, 1200, 3000], [240000, 3000], [720000000]]
def remaindersusingproducttree(n,T):
result = [n]
for t in reversed(T):
result = [result[floor(i/2)] % t[i] for i in range(len(t))]
return result
def remainders(n,X):
return remaindersusingproducttree(n,producttree(X))
# example:
print remainders(8675309,[11,13,17,19,23])
# output: [5, 6, 5, 4, 8]
# double check:
print [8675309 % p for p in [11,13,17,19,23]]
# output: [5, 6, 5, 4, 8]
def batchgcd_simple(X):
R = remainders(product(X),[n^2 for n in X])
return [gcd(r/n,n) for r,n in zip(R,X)]
def batchgcd_faster(X):
prods = producttree(X)
R = prods.pop()
while prods:
X = prods.pop()
R = [R[floor(i/2)] % X[i]**2 for i in range(len(X))]
return [gcd(r/n,n) for r,n in zip(R,X)]
# example:
print batchgcd_simple([1909,2923,291,205,989,62,451,1943,1079,2419])
print batchgcd_faster([1909,2923,291,205,989,62,451,1943,1079,2419])
def primesin(P,x):
result = remainders(x,P)
return [p for p,r in zip(P,result) if r == 0]
def primesinproduct(P,X):
return primesin(P,product(X))
def primesineach(P,X):
n = len(X)
if n == 0: return []
P = primesinproduct(P,X)
if n == 1: return [P]
return primesineach(P,X[:n//2]) + primesineach(P,X[n//2:])
# example:
P = list(primes(2,10))
X = [50,157,266,377,490,605]
print primesineach(P,X)
# output: [[2, 5], [], [2, 7], [], [2, 5, 7], [5]]
# double check:
print [[p for p in P if x%p==0] for x in X]
# output: [[2, 5], [], [2, 7], [], [2, 5, 7], [5]]
def fermatfactor(N):
if N <= 0: return [N]
if is_even(N): return [2,N/2]
a = ceil(sqrt(N))
while not is_square(a^2-N):
a = a + 1
b = sqrt(a^2-N)
return [a - b,a + b]
print fermatfactor(91)
print fermatfactor(1009)
print fermatfactor(6557)
N = 115792089237316195423570985008721211221144628262713908746538761285902758367353
print fermatfactor(N)
N = 115792089237316195448679392282006640413199890130332179010243714077028592474181
print fermatfactor(N)
def lattice(n,nearp,howclose,t,k):
R.<x> = PolynomialRing(ZZ)
f = howclose*x+nearp
M = matrix(t)
for i in range(t):
M[i] = (f^i*n^max(k-i,0)).coeffs()+[0]*(t-1-i)
M = M.LLL()
Q = sum(z*(x/howclose)^i for i,z in enumerate(M[0]))
for r,multiplicty in Q.roots():
if nearp+r > 0:
g = gcd(n,nearp+r)
if g > 1: return [g,n/g]
return [1,n]
# examples:
print lattice(314159265358979323,317213000,1000,5,2)
# output: [317213509, 990371647]
print lattice(314159265358979323,317210000,10000,40,20)
# output: [317213509, 990371647]
def oddpowers(P,x):
if len(P) == 0: return [[],x,x]
P = primesin(P,x)
e,r,x = oddpowers([p*p for p in P],x)
Q = primesin(P,r)
return [Q,r / product(Q),x]
def oddpowersineach(P,X):
return [oddpowers(Q,x) for Q,x in zip(primesineach(P,X),X)]
def easilyfactorable(x,pmodx):
smoothpart = Mod(pmodx,x)^x.nbits()
return (x / gcd(x,Integer(smoothpart))).is_square()
def easyfactorizations(P,X):
result = zip(X,remainders(product(P),X))
result = [x for x,pmodx in result if easilyfactorable(x,pmodx)]
return oddpowersineach(P,result)
# example:
print easyfactorizations([2,3,5,7],[50,157,266,377,490,605])
# output: [[[2], 1, 50], [[2, 5], 1, 490], [[5], 121, 605]]
def qs_basic(N,differences,y):
X = [Integer(a^2-N) for a in range(sqrt(N)+1,sqrt(N)+differences)]
P = list(primes(2,y))
F = easyfactorizations(P,X)
M = matrix(GF(2),len(F),len(P),lambda i,j:P[j] in F[i][0])
for K in M.left_kernel().basis():
x = product([sqrt(f[2]+N) for f,k in zip(F,K) if k==1])
y = sqrt(product([f[2] for f,k in zip(F,K) if k==1]))
return [gcd(N,x - y),gcd(N,x + y)]
return [1,N]
# example:
print qs_basic(275801,1000,20)
# output: [389, 709]
def rho(n):
# Pollard's rho method
c = 10
a0 = 1
a1 = a0^2+c
a2 = a1^2+c
while gcd(n,a2-a1) == 1:
a1 = (a1^2+c) % n
a2 = (a2^2+c) % n
a2 = (a2^2+c) % n
g = gcd(n,a2-a1)
return [g,n / g]
# examples (second example is faster because prime is smaller):
print rho(314159265358979323)
# output: [990371647, 317213509]
print rho(698599699288686665490308069057420138223871)
# output: [2053, 340282366920938463463374607431768211507]
def p1exponent(cutoff):
return lcm(range(1,cutoff))
def p1(n,cutoff):
# Pollard's p-1 method
g = gcd(n,Integer(pow(2,p1exponent(cutoff),n))-1)
return [g,n/g]
# example:
print p1(38568900844635025971879799293495379321,2^14)