-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
366 lines (313 loc) · 19.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
from utils import load_input_data, load_configs, init, maybe_make_dir, get_best_model_checkpoint, remove_checkpoints, log_wandb, print_and_log, plot_step
from evaluate import evaluate_model, compute_val_metrics
from models.models_utils import getModel, getOptimizer, getLossFn
from dataloader.dataloader import MCSZDataset
import torch
from utils import summary, summary_string
import time
import wandb
from shutil import copy
def train(configs, df, data, device):
# Define folds
if configs['experimentEnv']['cross_validation']['enabled']:
folds = configs['experimentEnv']['cross_validation']['k']
else:
folds = 1
# Training
for model_name in configs['experimentEnv']['models']:
for optimizer_name in configs['experimentEnv']['optimizers']:
for lossFn_name in configs['experimentEnv']['losses']:
for fold in range(folds):
# Initialize model and configs
print_and_log("[INFO] initializing the model...", configs)
print_and_log(f"\t Model: {model_name}", configs)
print_and_log(f"\t Optimizer: {optimizer_name}", configs)
print_and_log(f"\t Loss function: {lossFn_name}", configs)
if(configs['experimentEnv']['cross_validation']['enabled']):
print_and_log(f"\t Fold: {fold}", configs)
if(configs['experimentEnv']['cross_validation']['enabled'] and configs['experimentEnv']['use_validation_split']):
# Training
df_train = df[(df['split'].isin(['train', 'training'])) & (df["filename"].notnull()) & (df['fold_cv']!=fold)].reset_index()
train_data = MCSZDataset(df_train, data, configs, do_transform=configs['experimentEnv']['data_augmentation'], one_hot_encoding=True)
# Validation
df_val = df[(df['split'].isin(['train', 'training'])) & (df["filename"].notnull()) & (df['fold_cv']==fold)].reset_index()
val_data = MCSZDataset(df_val, data, configs, do_transform=False, one_hot_encoding=True)
# Loaders
trainDataLoader = torch.utils.data.DataLoader(train_data, batch_size=configs['experimentEnv']['batch_size'], shuffle=True, num_workers=0)
valDataLoader = torch.utils.data.DataLoader(val_data, batch_size=configs['experimentEnv']['batch_size'], shuffle=False, num_workers=0)
# calculate steps per epoch for training and validation set
trainSteps = len(trainDataLoader.dataset) // configs['experimentEnv']['batch_size']
valSteps = len(valDataLoader.dataset) // configs['experimentEnv']['batch_size']
elif(not(configs['experimentEnv']['cross_validation']['enabled']) and configs['experimentEnv']['use_validation_split']):
# Training
df_train = df[(df['split'].isin(['train', 'training'])) & (df["filename"].notnull())].reset_index()
train_data = MCSZDataset(df_train, data, configs, do_transform=configs['experimentEnv']['data_augmentation'], one_hot_encoding=True)
# Validation
df_val = df[(df['split'].isin(['val', 'validation'])) & (df["filename"].notnull())].reset_index()
val_data = MCSZDataset(df_val, data, configs, do_transform=False, one_hot_encoding=True)
# Loaders
trainDataLoader = torch.utils.data.DataLoader(train_data, batch_size=configs['experimentEnv']['batch_size'], shuffle=True, num_workers=0)
valDataLoader = torch.utils.data.DataLoader(val_data, batch_size=configs['experimentEnv']['batch_size'], shuffle=False, num_workers=0)
# calculate steps per epoch for training and validation set
trainSteps = len(trainDataLoader.dataset) // configs['experimentEnv']['batch_size']
valSteps = len(valDataLoader.dataset) // configs['experimentEnv']['batch_size']
elif(not(configs['experimentEnv']['use_validation_split'])):
fold='all'
valDataLoader = None
else:
fold = 'all'
# Model definition
model = getModel(model_name, configs, device)
# Summary of the model
try:
if(model_name not in ['DenseNet12']):
summary(model, (1, 256, 256))
ss = summary_string(model, (1, 256, 256))
configs['logger'].info(ss[0])
else:
print_and_log("Summary not displayed for DenseNet121, some errors may occur.", configs)
except:
print_and_log("Pytorch-Summary failed. Please check if anything is wrong. Please note that for DenseNet121, some errors may occur.", configs)
# Initialize optimizer and loss function
opt = getOptimizer(optimizer_name, model, configs)
lossFn = getLossFn(lossFn_name)
# initialize dictionary to store training history
if(configs['experimentEnv']['use_validation_split']):
H = {
"train_loss": [],
"train_acc": [],
"val_loss": [],
"val_acc": [],
"val_f1": [],
"val_precision": [],
"val_recall": [],
"val_auc": [],
"val_sn": [],
"val_sp": []
}
else:
H = {
"train_loss": [],
"train_acc": []
}
# Run ID
configs['experimentDescription']['run_id'] = wandb.util.generate_id()
if(configs['wandb']['enable_tracking']):
# WandB – Config is a variable that holds and saves hyperparameters and inputs
cfg = {
'batch_size': configs['experimentEnv']['batch_size'],
'test_batch_size': configs['experimentEnv']['test_batch_size'],
'epochs': configs['experimentEnv']['epochs'],
'lr': configs['experimentEnv']['optim_args'][optimizer_name]['learning_rate'],
'weight_decay': configs['experimentEnv']['optim_args'][optimizer_name]['weight_decay'],
'random_state': configs['random_state'],
'model': model_name,
'optimizer': optimizer_name,
'description': configs['experimentDescription']['experiment_description'],
'run_id': configs['experimentDescription']['run_id'],
'fold': fold if configs['experimentEnv']['cross_validation']['enabled'] else None,
'lossFn': lossFn_name
}
# WandB – Initialize a new run
wandb.init(
project=configs['experimentDescription']['project_name'],
group=configs['experimentDescription']['experiment_name'],
job_type=model_name,
id=configs['experimentDescription']['run_id'],
save_code=True,
tags=[model_name, optimizer_name, lossFn_name],
config=cfg,
reinit=True,
resume='allow'
)
wandb.watch_called = False # Re-run the model without restarting the runtime, unnecessary after our next release
# WandB – wandb.watch() automatically fetches all layer dimensions, gradients, model parameters and logs them automatically to your dashboard.
# Using log="all" log histograms of parameter values in addition to gradients
wandb.watch(model, log="all")
# measure how long training is going to take
print_and_log("[INFO] training the network...", configs)
startTime = time.time()
for epoch in range(configs['experimentEnv']['epochs']):
wandb_dict = {} # wandb to log
# Training step
train_step(H, configs, wandb_dict, model, device, trainDataLoader, opt, lossFn, epoch, lossFn_name, trainSteps)
# Validation step
val_step(H, configs, wandb_dict, model, device, valDataLoader, lossFn, lossFn_name, valSteps)
# Plot learning curve (real time)
plot_step(H, epoch, configs, model_name, optimizer_name, lossFn_name)
# WandB
if(configs['wandb']['enable_tracking']):
log_wandb(wandb_dict)
# Save model checkpoint
if(configs['experimentEnv']['save_model_on_epoch']):
DIR = os.path.join(configs['out_training_dir'], configs['experimentDescription']['experiment_name'],model_name,optimizer_name,lossFn_name,f"fold_{str(fold)}",f"epoch_{str(epoch).zfill(len(str(configs['experimentEnv']['epochs'])))}")
maybe_make_dir(DIR)
PATH = os.path.join(DIR,f"model.pth")
print_and_log(f"[INFO] Saving model checkpoint at: {PATH} \n", configs)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': opt.state_dict(),
}, PATH)
# Finish measuring how long training took
endTime = time.time()
print_and_log(f"[INFO] total time taken to train the model: {(endTime - startTime):.2f}s \n", configs)
print_and_log('Finished Training \n', configs)
# Save model - last epoch
DIR = os.path.join(configs['out_training_dir'], configs['experimentDescription']['experiment_name'],model_name,optimizer_name,lossFn_name,f"fold_{str(fold)}")
maybe_make_dir(DIR)
PATH = os.path.join(DIR,'model_last.pth')
print_and_log(f"[INFO] Saving model... \n", configs)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': opt.state_dict(),
}, PATH)
## WandB
if(configs['wandb']['enable_tracking']):
wandb.save('model.pth')
# Select best model checkpoint
if(configs['experimentEnv']['save_model_on_epoch'] and configs['experimentEnv']['use_validation_split']):
print_and_log("[INFO] Selecting best epoch...\n", configs)
best_epoch, best_epoch_metrics, best_model_path = get_best_model_checkpoint(H,configs,model_name,optimizer_name,lossFn_name,fold,metric='val_auc',trim_epochs_ratio=configs['experimentEnv']['trim_epochs_ratio'])
print_and_log(f"Best epoch starting with 0: {best_epoch}", configs)
print_and_log(f"Best epoch starting with 1: {best_epoch+1}", configs)
best_model_path_dst = os.path.join(configs['out_training_dir'], configs['experimentDescription']['experiment_name'],model_name,optimizer_name,lossFn_name,f"fold_{str(fold)}","model_best.pth")
# Copy pth
copy(best_model_path,best_model_path_dst)
# Load best model
model = getModel(model_name, configs, device)
opt = getOptimizer(optimizer_name,model,configs)
checkpoint = torch.load(best_model_path)
epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model_state_dict'])
opt.load_state_dict(checkpoint['optimizer_state_dict'])
## WandB
if(configs['wandb']['enable_tracking']):
wandb.save('model_best.pth')
# Test model - best epoch
if(configs['experimentEnv']['test_model']):
print_and_log("[INFO] testing network...\n", configs)
df_test = df[(df['split']=='test') & (df["filename"].notnull())].reset_index()
test_data = MCSZDataset(df_test, data, configs, do_transform=False, one_hot_encoding=True)
testDataLoader = torch.utils.data.DataLoader(test_data, batch_size=configs['experimentEnv']['test_batch_size'], shuffle=False, num_workers=0)
testSteps = len(testDataLoader.dataset) // configs['experimentEnv']['test_batch_size']
evaluate_model(configs, model, lossFn, device, testDataLoader, testSteps, classes=configs['experimentEnv']['classes'], lossFn_name=lossFn_name, apply_softmax=configs['experimentEnv']['apply_softmax'], threshold=configs['experimentEnv']['pred_thresh'])
# Finish WandB run
if(configs['wandb']['enable_tracking']):
wandb.finish()
# Post-training clean model checkpoints
if(configs['experimentEnv']['post_training_remove_checkpoints']):
remove_checkpoints(os.path.join(configs['out_training_dir'], configs['experimentDescription']['experiment_name'],model_name,optimizer_name,lossFn_name,f"fold_{str(fold)}"), configs)
def train_step(H, configs, wandb_dict, model, device, trainDataLoader, optimizer, lossFn, epoch, lossFn_name, trainSteps):
'''
Training step with validation.
'''
# set the model in training mode
model.train()
# initialize the total training and validation loss
totalTrainLoss = 0
# initialize the number of correct predictions in the training and validation step
trainCorrect = 0
# loop over the training set
for (x, y) in trainDataLoader:
# send the input to the device
(x, y) = (x.to(device=device, dtype=torch.float), y.to(device=device, dtype=torch.long))
# Adapt for CrossEntropyLoss
if(lossFn_name=='CrossEntropy'):
y = y[:,0]
# Zeros the parameter gradients
optimizer.zero_grad()
# Forward + backward + optimize
pred = model(x)
loss = lossFn(pred, y)
loss.backward()
optimizer.step()
# add the loss to the total training loss so far and calculate the number of correct predictions
totalTrainLoss += loss
if(lossFn_name=='CrossEntropy'):
trainCorrect += (pred.argmax(1) == y).type(torch.float).sum().item()
else:
trainCorrect += (pred.argmax(1) == y.argmax(1)).type(torch.float).sum().item()
# Calculate the average training loss
avgTrainLoss = totalTrainLoss / trainSteps
# Calculate the training accuracy
trainCorrect = trainCorrect / len(trainDataLoader.dataset)
# Update our training history
train_loss = float(avgTrainLoss.cpu().detach().numpy())
train_acc = trainCorrect
H["train_loss"].append(train_loss)
H["train_acc"].append(train_acc)
# Update wandb dict
wandb_dict.update({
"train_loss": train_loss,
"train_acc": train_acc
})
# Print the model training/validation info
print_and_log(f"[INFO] EPOCH: {epoch + 1}/{configs['experimentEnv']['epochs']}", configs)
print_and_log(f"Train loss: {avgTrainLoss:.6f}, Train accuracy: {trainCorrect:.4f}", configs)
return H, wandb_dict
def val_step(H, configs, wandb_dict, model, device, valDataLoader, lossFn, lossFn_name, valSteps):
# initialize the total training and validation loss
totalValLoss = 0
# initialize the number of correct predictions in the training and validation step
valCorrect = 0
# Switch off autograd for evaluation - Disabling gradient calculation is useful for inference, when you are sure that you will not call Tensor.backward(). Reduces memory consumption.
with torch.no_grad():
# Set the model in evaluation mode
model.eval()
# Initialize variables
preds, preds_logits, gt = [], [], []
val_loss = 0
# Loop over the validation set
for (x, y) in valDataLoader:
# Send the input to the device
(x, y) = (x.to(device, dtype=torch.float), y.to(device, dtype=torch.long))
# Adapt for CrossEntropyLoss
if(lossFn_name=='CrossEntropy'):
y = y[:,0]
# Make the predictions, compute validation loss and add them to the lists
pred = model(x)
totalValLoss += lossFn(pred, y)
pred_label = pred.argmax(axis=1).cpu().numpy()
preds.extend(pred_label)
preds_logits.extend(pred.cpu().numpy())
gt.extend(y.cpu().numpy())
# Calculate the number of correct predictions
if(lossFn_name=='CrossEntropy'):
valCorrect += (pred.argmax(1) == y).type(torch.float).sum().item()
else:
valCorrect += (pred.argmax(1) == y.argmax(1)).type(torch.float).sum().item()
# Calculate the average validation loss
avgValLoss = totalValLoss / valSteps
# Calculate the training and validation accuracy
valCorrect = valCorrect / len(valDataLoader.dataset)
# Update validaton history
val_loss = float(avgValLoss.cpu().detach().numpy())
val_acc = valCorrect
H["val_loss"].append(val_loss)
H["val_acc"].append(val_acc)
# Update wandb dict
wandb_dict.update({
"val_loss": val_loss,
"val_acc": val_acc
})
# Calculate extra validation metrics
val_metrics = compute_val_metrics(H, wandb_dict, gt, preds, preds_logits, lossFn_name)
# Print the model training/validation info
print_and_log(f"Val loss: {avgValLoss:.6f}, Val accuracy: {valCorrect:.4f}, Val F1: {val_metrics['val_f1']:.4f}, Val AUC: {val_metrics['val_auc']:.4f}\n", configs)
return H, wandb_dict
if __name__ == "__main__":
# 1. Load configs
configs = load_configs("./config_train.yaml")
# 2. Load input data
df, data = load_input_data(configs)
# 3. Define device and init
configs, device = init(configs)
# 4. Print and log configs
print_and_log("### CONFIGURATIONS ###\n", configs)
print_and_log(configs, configs)
print_and_log("\n######################\n", configs)
# 5. Train
train(configs, df, data, device)