forked from yalsayyad/gen_ssm_db
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_coeff_flexible_recursive.py
362 lines (309 loc) · 14.3 KB
/
gen_coeff_flexible_recursive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""
Compute ephemerides with openorb and output their
Chebyshev polynomial coefficients
Usage:
python gen_coeff_flexible_recursive.py <filename> <start_time_tai> <days> <coefficients> <totaldays>
Examples: python gen_coeff_flexible_recursive.py tests/S1_00.zzz_49353.des 49343 30 14 30
remember to setup the library environment variables first:
>export OORB_CONF=/share/pogo3/krughoff/shared/oorb/main/oorb.conf
>export OORB_DATA=/share/pogo3/krughoff/shared/oorb/data/
"""
import numpy as np
import chebfit as cg
import chebeval as ce
import sys
import movingObject as mo
import math
import pyoorb as oo
DEBUG = False
def sphericalDistance(origin, destination):
lat1, lon1 = origin
lat2, lon2 = destination
radius = 1.0
dlat = math.radians(lat2-lat1)
dlon = math.radians(lon2-lon1)
a = math.sin(dlat/2) * math.sin(dlat/2) + math.cos(math.radians(lat1)) \
* math.cos(math.radians(lat2)) * math.sin(dlon/2) * math.sin(dlon/2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
d = radius * c
return d*180.0/np.pi
def get_coeffs_position(t, ra, dec, dracoorddt, ddecdt, ng, npo, coeff, multiplier=(None, None)):
p, dec_resid, dec_rms = cg.chebfit(t, dec, ddecdt,
xMultiplier=multiplier[0], dxMultiplier=multiplier[1], nPoly=coeff)
rap, ra_resid, ra_rms = cg.chebfit(t, ra, dracoorddt,
xMultiplier=multiplier[0], dxMultiplier=multiplier[1], nPoly=coeff)
ra_real_resid = (ra_resid)*np.cos(np.pi*dec/180.)
return p, rap, 3600.0*1000.0*np.max(np.sqrt(dec_resid**2 + ra_real_resid**2))
def get_coeffs_vmag(t, vmag, ng, npo, coeff, multiplier=None):
p, resid, rms = cg.chebfit(t, vmag, None, xMultiplier=multiplier, nPoly=coeff)
return p, np.max(np.abs(resid))
def get_coeffs_se(t, se, ng, npo, coeff, multiplier=None):
p, resid, rms = cg.chebfit(t, se, None, xMultiplier=multiplier, nPoly=coeff)
return p, np.max(np.abs(resid))
def get_coeffs_dist(t, dist, distdt, ng, npo, coeff, multiplier=(None, None)):
p, resid, rms = cg.chebfit(t, dist, distdt,
xMultiplier=multiplier[0], dxMultiplier=multiplier[1], nPoly=coeff)
return p, np.max(np.abs(resid))
def get_coeffs_dist2(t, dist, ng, npo, coeff, multiplier=None):
p, resid, rms = cg.chebfit(t, dist, None, xMultiplier=multiplier, nPoly=coeff)
return p, np.max(np.abs(resid))
def get_granularity(distance):
"""
if distance is 0.8 degrees/day treat same as MBA
< 1.6 degrees/day try gen 1 day at 64 points per day.
< 3.2 deg/day try gen 0.5 day at 128 points per day
<6.4 deg/day try gen 0.25 day at 256 points per day
< 12.8 deg.day try gen 0.125 day at 512 points per day
< 25.6 deg/day try gen 0.0625 day at 1024 points per day
< 51.2 deg/day try gen 0.03125 day at 2048 points per day
try gen 0.015625 day at 4096 points per day
ngran = 64 #always ngran = int(range/timestep)
"""
if distance < 0.8:
timestep = 0.03125 # 1/32 day
length = 2. # days 2
elif distance < 1.6:
timestep = 0.015625 # 1/64 day
length = 1. # days 1
elif distance < 3.2:
timestep = 0.0078125 # 1/128 day
length = 0.5 # days 1/2
elif distance < 6.4:
timestep = 0.00390625 # 1/256 day
length = 0.25 # days 1/4
elif distance < 12.8:
timestep = 0.001953125 # 1/512 day
length = 0.125 # days 1/8
elif distance < 25.6:
timestep = 0.0009765625 # 1/1024 day
length = 0.0625 # days 1/16
elif distance < 51.2:
timestep = 0.00048828125 # 1/2048 day
length = 0.03125 # days 1/32
elif distance < 102.4:
timestep = 0.000244140625 # 1/4096 day
length = 0.015625 # days 1/64
else: # fastest it can go
timestep = 0.0001220703125 # 1/8192 day
length = 0.0078125 # days 1/128
return timestep, length, 64
def three_sixy_to_neg(element, min, max):
if (min < 100) & (max > 270):
if element > 270:
return element - 360.
else:
return element
else:
return element
v_360_to_neg = np.vectorize(three_sixy_to_neg)
def getEphem(movobj, startMjd, length, dt):
mjdTaiList = list(np.arange(startMjd, startMjd + length + dt, dt))
t = np.empty(len(mjdTaiList))
ra = np.empty(len(mjdTaiList))
dec = np.empty(len(mjdTaiList))
dracoorddt = np.empty(len(mjdTaiList))
ddecdt = np.empty(len(mjdTaiList))
vmag = np.empty(len(mjdTaiList))
dist = np.empty(len(mjdTaiList))
se = np.empty(len(mjdTaiList))
movobj.calcEphemeris(mjdTaiList, obscode=807, eph_timescale=4.0)
# if DEBUG==True: print "end calc ephemeris", time.time() - starttime
for j, mjdTai in enumerate(mjdTaiList):
t[j], ra[j], dec[j], dracoorddt[j], ddecdt[j], vmag[j], dist[j], se[j] = \
movobj.Ephemerides[movobj.mjdTaiStr(mjdTai)].getPosition()
return t, ra, dec, dracoorddt, ddecdt, vmag, dist, se
def plotRaDecT(ra, dec, t, cra, cdec):
import matplotlib.pyplot as plt
trange = np.arange(t[0], t[-1], 0.01)
raEval, vraEval = ce.chebeval(trange, cra, interval=np.array([t[0], t[-1]]))
plt.plot(t, ra, 'k.')
plt.plot(trange, raEval, 'r-')
plt.ylabel('RA')
plt.show()
decEval, vdecEval = ce.chebeval(trange, cdec, interval=np.array([t[0], t[-1]]))
plt.plot(t, dec, 'k.')
plt.plot(trange, decEval, 'b-')
plt.ylabel('Dec')
plt.show()
def adjustTimeLengthExtreme(p_resid, dec, timestep, length):
if p_resid > 1000:
timestep = timestep/16
length = length/16
elif p_resid > 100:
timestep = timestep/8
length = length/8
elif p_resid > 15:
timestep = timestep/4
length = length/4
elif p_resid > 5:
timestep = timestep/2
length = length/2
elif p_resid > 2:
timestep = timestep/1
length = length/1
elif p_resid > 1:
timestep = timestep/1
length = length/1
# cut it in half once more if chance to go over poles
if dec < -75. or dec > 75.:
timestep = timestep/2
length = length/2
return timestep, length
def adjustTimeLengthNormal(p_resid, dec, timestep, length):
if p_resid > 5:
timestep = timestep/4
length = length/4
elif p_resid > 2:
timestep = timestep/2
length = length/2
# cut it in half once more if chance to go over poles
if dec < -75. or dec > 75.:
timestep = timestep/2
length = length/2
return timestep, length
def getGran(ssmid, mymo, start_time, days, coeff):
# first, lets generate a day and see how far it goes:
halfofDaysToRun = start_time + int(days/2)
t, ra, decl, dracoorddt, ddecdt, magV, dist, se = getEphem(mymo, halfofDaysToRun, 1.0, 1.0)
distance = sphericalDistance([ra[0], decl[0]], [ra[1], decl[1]])
timestep, length, ngran = get_granularity(distance)
t, ra, dec, dracoorddt, ddecdt, vmag, dist, se = getEphem(mymo, halfofDaysToRun, length, timestep)
pdec, pra, p_resid = get_coeffs_position(t, v_360_to_neg(ra, np.min(ra), np.max(ra)), dec,
dracoorddt, ddecdt, 64, 64, coeff)
if DEBUG:
print "test presid MAIN is", p_resid
timestep, length = adjustTimeLengthNormal(p_resid, dec[0], timestep, length)
return timestep, length, ngran
def breakItDown(ssmid, mymo, start_time, timestep, days, ngran, coeff, multiplier, CoeffFile,
ResidualSumfile, Failedfile, inputfilename):
timestep = timestep/2.
length = days/2
halfofDaysToRun = start_time
t, ra, dec, dracoorddt, ddecdt, vmag, dist, se = getEphem(mymo, halfofDaysToRun, length, timestep)
pdec, pra, p_resid = get_coeffs_position(t, v_360_to_neg(ra, np.min(ra), np.max(ra)),
dec, dracoorddt, ddecdt, 64, 64, coeff)
if DEBUG:
print "test presid RECURSIVE is", p_resid
timestep, length = adjustTimeLengthExtreme(p_resid, dec[0], timestep, length)
doOneRecursiveSegment(ssmid, mymo, start_time, days, coeff, timestep, length, ngran,
multiplier, CoeffFile, ResidualSumfile, Failedfile, inputfilename)
def doOneRecursiveSegment(ssmid, mymo, start_time, days, coeff, timestep, length, ngran,
multiplier, CoeffFile, ResidualSumfile, Failedfile, inputfilename):
t, ra, dec, dracoorddt, ddecdt, vmag, dist, se = getEphem(mymo, start_time, days, timestep)
# now we have our arrays and fit exactly like before
day0 = 0
day1 = 64
rows = 1
npoint = 64
while day0 < len(t) - 64:
pdec, pra, p_resid = get_coeffs_position(t[day0:day1+1],
v_360_to_neg(ra[day0:day1+1],
np.min(ra[day0:day1+1]),
np.max(ra[day0:day1+1])),
dec[day0:day1+1], dracoorddt[day0:day1+1], ddecdt[day0:day1+1],
ngran, npoint, coeff, multiplier['POSITION'])
if p_resid > 2.5:
if DEBUG:
print "oh no!:", p_resid
breakItDown(ssmid, mymo, t[day0], timestep, length, ngran, coeff, multiplier,
CoeffFile, ResidualSumfile, Failedfile, inputfilename)
else: # we're good. Print it out to file
d, d_resid = get_coeffs_dist2(t[day0:day1+1], dist[day0:day1+1], ngran, npoint, 5, multiplier['DIST_X'])
v, v_resid = get_coeffs_vmag(t[day0:day1+1], vmag[day0:day1+1], ngran, npoint, 9, multiplier['VMAG_X'])
s, s_resid = get_coeffs_se(t[day0:day1+1], se[day0:day1+1], ngran, npoint, 6, multiplier['SE_X'])
if np.isnan(v_resid) | np.isnan(d_resid) | np.isnan(s_resid):
print 'do not print!!'
print >>Failedfile, "%s %i %.14f %.14f %.14f %.14e %.14e %.14e %.14e %s" % (
ssmid, rows, t[day0], t[day1], t[day1] - t[day0], p_resid, d_resid,
v_resid, s_resid, inputfilename)
else:
print >>ResidualSumfile, "%s %i %.14f %.14f %.14f %.14e %.14e %.14e %.14e %s" % (
ssmid, rows, t[day0], t[day1], t[day1] - t[day0], p_resid, d_resid,
v_resid, s_resid, inputfilename)
print >>CoeffFile, "%i %s %.10f %.10f %s %s %s %s %s"%(0,
ssmid, t[day0], t[day1], " ".join('%.14e'%j for j in pra), " ".join('%.14e'%j for j in pdec),
" ".join('%.7e'%j for j in d), " ".join('%.7e'%j for j in v), " ".join('%.7e'%j for j in s))
# advance to the next day if less than 6 points left in month
day0 = day1
day1 = day1 + 64
rows = rows + 1
def doOneMonth(ssmid, mymo, start_time, days, coeff, multiplier, CoeffFile, ResidualSumfile,
Failedfile, inputfilename, knownGran=True):
if not knownGran:
timestep, length, ngran = getGran(ssmid, mymo, start_time, days, coeff)
if DEBUG:
print ssmid, start_time, days, coeff, timestep, length, ngran
else:
timestep = 0.03125
length = 2.0
ngran = 64
doOneRecursiveSegment(ssmid, mymo, start_time, days, coeff, timestep,
length, ngran, multiplier, CoeffFile, ResidualSumfile,
Failedfile, inputfilename)
def main(argv):
inputfilepath = argv[0]
start_time = float(argv[1])
days = int(argv[2])
coeff = int(argv[3])
totaldays = int(argv[4])
print 'Generating and Fitting Ephems starting:', start_time
print 'working on file ', inputfilepath
print 'timespan in days ', days
print 'number of coefficients ', coeff
# open output files
inputfilename = inputfilepath.split("/")
CoeffFile = open(inputfilename[-1] + '.coef_vartime_' + str(coeff) + '.dat', 'w')
ResidualSumfile = open(inputfilename[-1] + '.resid_sum_vartime_' + str(coeff) + '.dat', 'w')
Failedfile = open(inputfilename[-1] + '.failed_' + str(coeff) + '.dat', 'w')
# get input
orbit = np.loadtxt(inputfilepath, comments='!!', usecols=(2, 3, 4, 5, 6, 7, 8, 9),
delimiter=None, dtype=np.float64, unpack=True)
ssmid = np.loadtxt(inputfilepath, comments='!!', usecols=(0,), delimiter=None, dtype=np.str, unpack=True)
q = orbit[0]
e = orbit[1]
inc = orbit[2]
omega = orbit[3]
argperi = orbit[4]
t_p = orbit[5]
H = orbit[6]
t_0 = orbit[7]
oo.pyoorb.oorb_init(ephemeris_fname="")
print 'total days ', totaldays
# Make Multiplier Dict:
VMAG_COEFF = 9
DIST_COEFF = 5
SE_COEFF = 6
# Precompute multiplier because
# we don't want to invert a matrix for every segment
nPoints = 64
multipliers = {}
multipliers['POSITION'] = cg.makeChebMatrix(nPoints + 1, coeff, weight=0.16)
multipliers['VMAG_X'] = cg.makeChebMatrixOnlyX(nPoints + 1, VMAG_COEFF)
multipliers['DIST'] = cg.makeChebMatrix(nPoints + 1, DIST_COEFF, weight=0.16)
multipliers['DIST_X'] = cg.makeChebMatrixOnlyX(nPoints + 1, DIST_COEFF)
multipliers['SE_X'] = cg.makeChebMatrixOnlyX(nPoints + 1, SE_COEFF)
# check if only 1 row
theShape = orbit.shape
if len(theShape) == 2:
datalen = theShape[1]
else:
datalen = 1
if DEBUG:
print 'datalen', datalen
for i in range(datalen):
if datalen == 1:
id = ssmid
mymo = mo.MovingObject(q, e, inc, omega, argperi, t_p, t_0, objid=ssmid, magHv=H)
else:
id = ssmid[i]
mymo = mo.MovingObject(q[i], e[i], inc[i], omega[i], argperi[i],
t_p[i], t_0[i], objid=ssmid[i], magHv=H[i])
tmpStartTime = start_time
while tmpStartTime < start_time + totaldays:
doOneMonth(id, mymo, tmpStartTime, days, coeff, multipliers, CoeffFile,
ResidualSumfile, Failedfile, inputfilename[-1])
tmpStartTime += days
CompletedNotice = open(inputfilename[-1] + '.done.txt', 'w')
print >>CompletedNotice, "Success"
if __name__ == "__main__":
main(sys.argv[1:])