-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsim_2D_Dis_limitrange.m
139 lines (103 loc) · 3.74 KB
/
sim_2D_Dis_limitrange.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
clear all; close all; clc;
global M;
global Ind;
% Simulation parameters
num_nodes = 1000;
Cor = zeros(num_nodes, 2);
n_std = 0.1;
range_upper = 40;
range_lower = 5;
base = 6;
size_sub = 25;
overlap = 5;
% Generate ground truth (G.T.)
Cor_gt = 100 * rand(num_nodes, 2);
Cor_gt(1:4, :) = [100, 0; 100, 100; 0, 0; 0, 100];
% Adjacent matrix of G.T.
M_gt = zeros(num_nodes);
for i = 1:(num_nodes-1)
for j = (i+1):num_nodes
M_gt(i, j) = sqrt(sum((Cor_gt(i, :) - Cor_gt(j, :)) .^ 2));
M_gt(j, i) = M_gt(i, j);
end
end
% Adjacent matrix of simulated measurement with Gaussion noise and limited communication range
noise = n_std * sqrt(2) * randn(num_nodes, num_nodes);
noise = ((noise + noise.') / 2) .* (1- eye(num_nodes));
M = M_gt + noise;
figure;
imshow(M == -1);
M(M > range_upper) = -1;
M(M < range_lower) = -1;
M = M + eye(num_nodes);
figure;
imshow(M == -1);
Ind = 1:num_nodes;
t = tic;
% Reconstruct M
Ind_c = dhy_2D_matrix_reconstruct(size_sub, overlap);
% figure;
% imshow(M == -1);
s = Ind_c(1, 1);
e = Ind_c(1, 2);
[Cor_t, ~, ~] = dhy_MDS_Adam_2D(M(s:e, s:e), 1e-5);
Cor(s:e, :) = Cor_t;
flag = e;
for i = 2:length(Ind_c(:, 1))
s = Ind_c(i, 1);
e = Ind_c(i, 2);
if s < flag
[Cor_t, ~, ~] = dhy_MDS_Adam_2D(M(s:e, s:e), 1e-5);
Cor_t = dhy_Ctrans_ICP(Cor_t, Cor(s:(s + overlap -1), :), 1:overlap);
elseif (e - s) > (overlap -1)
[Cor_t, ~, ~] = dhy_MDS_Adam_2D(M(s:e, s:e), 1e-5);
Cor_a = zeros(overlap, 2);
M_at = zeros(base + 1);
for j = s:(s + overlap - 1)
Ind_t = find(M(1:(s - 1), j) ~= -1, base);
M_at(:, base + 1) = [M(Ind_t, j); 0];
M_at(base + 1, :) = [M(Ind_t, j); 0].';
Cor_at = Cor(Ind_t, :);
Cor_square = sum(Cor_at .^ 2, 2);
M_t = (-2 .* (Cor_at * Cor_at.') + Cor_square) + Cor_square.';
M_t(M_t < 0) = 0;
M_at(1:base, 1:base) = sqrt(M_t);
[Cor_r, ~, ~] = dhy_MDS_Adam_2D(M_at, 1e-5);
Cor_r = dhy_Ctrans_ICP(Cor_r, Cor_at, 1:base);
Cor_a(j - s + 1, :) = Cor_r(base + 1, :);
end
Cor_t = dhy_Ctrans_ICP(Cor_t, Cor_a, 1:overlap);
else
M_at = zeros(base + 1);
for j = s:e
Ind_t = find(M(1:(s - 1), j) ~= -1, base);
M_at(:, base + 1) = [M(Ind_t, j); 0];
M_at(base + 1, :) = [M(Ind_t, j); 0].';
Cor_at = Cor(Ind_t, :);
Cor_square = sum(Cor_at .^ 2, 2);
M_t = (-2 .* (Cor_at * Cor_at.') + Cor_square) + Cor_square.';
M_t(M_t < 0) = 0;
M_at(1:base, 1:base) = sqrt(M_t);
[Cor_r, ~, ~] = dhy_MDS_Adam_2D(M_at, 1e-5);
Cor_r = dhy_Ctrans_ICP(Cor_r, Cor_at, 1:base);
Cor(j, :) = Cor_r(base + 1, :);
end
continue;
end
Cor(s:e, :) = Cor_t;
flag = e;
end
Ind_a = [find(Ind == 1), find(Ind == 2), find(Ind == 3), find(Ind == 4)];
Cor = dhy_Ctrans_ICP(Cor, Cor_gt([1, 2, 3, 4], :), Ind_a);
t_e = toc(t);
% Some statistics
bias = sum(sqrt(sum((Cor - Cor_gt(Ind, :)) .^ 2, 2))) / num_nodes;
% Plot result
figure;
plot(Cor_gt(:, 1), Cor_gt(:, 2), 'ro', 'markersize', 6); hold on;
plot(Cor_gt([1, 2, 3, 4], 1), Cor_gt([1, 2, 3, 4], 2), 'go', 'Marker', 'square', 'markersize', 12, 'linewidth', 3.0); hold on;
plot(Cor(:, 1), Cor(:, 2), 'bx', 'markersize', 10); hold on;
axis equal;
axis([-0.5, 100.5, -0.5, 100.5]);
legend('Ground Truth', 'Anchor nodes', ['Sim, ', num2str(t_e), ' s']);
title([num2str(num_nodes), ' nodes; Noise std: ', num2str(n_std * 100), ' cm; Avg bias: ', num2str(bias * 100), ' cm']);