-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathload_forecast_sklearn.py
376 lines (330 loc) · 12.5 KB
/
load_forecast_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import copy
import pathlib
import pickle
import time
import numpy as np
import pandas as pd
import plotly.io as pio
from skforecast.model_selection import (
TimeSeriesFold,
backtesting_forecaster,
bayesian_search_forecaster,
)
from skforecast.recursive import ForecasterRecursive
from skforecast.utils import load_forecaster, save_forecaster
from sklearn.linear_model import ElasticNet, LinearRegression
from sklearn.metrics import r2_score
from sklearn.neighbors import KNeighborsRegressor
from emhass.forecast import Forecast
from emhass.retrieve_hass import RetrieveHass
from emhass.utils import (
build_params,
build_secrets,
get_days_list,
get_logger,
get_root,
get_yaml_parse,
)
pio.renderers.default = "browser"
pd.options.plotting.backend = "plotly"
# from skopt.space import Categorical, Real, Integer
# the root folder
root = pathlib.Path(str(get_root(__file__, num_parent=2)))
emhass_conf = {}
emhass_conf["data_path"] = root / "data/"
emhass_conf["docs_path"] = root / "docs/"
emhass_conf["root_path"] = root / "src/emhass/"
emhass_conf["config_path"] = root / "config.json"
emhass_conf["defaults_path"] = emhass_conf["root_path"] / "data/config_defaults.json"
emhass_conf["associations_path"] = emhass_conf["root_path"] / "data/associations.csv"
# create logger
logger, ch = get_logger(__name__, emhass_conf, save_to_file=True)
def add_date_features(data):
df = copy.deepcopy(data)
df["year"] = [i.year for i in df.index]
df["month"] = [i.month for i in df.index]
df["day_of_week"] = [i.dayofweek for i in df.index]
df["day_of_year"] = [i.dayofyear for i in df.index]
df["day"] = [i.day for i in df.index]
df["hour"] = [i.hour for i in df.index]
return df
def neg_r2_score(y_true, y_pred):
return -r2_score(y_true, y_pred)
if __name__ == "__main__":
days_to_retrieve = 240
model_type = "load_forecast"
var_model = "sensor.power_load_no_var_loads"
sklearn_model = "KNeighborsRegressor"
num_lags = 48
# Build params with no config and default secrets
data_path = emhass_conf["data_path"] / str("data_train_" + model_type + ".pkl")
_, secrets = build_secrets(emhass_conf, logger, no_response=True)
params = build_params(emhass_conf, secrets, {}, logger)
template = "presentation"
if data_path.is_file():
logger.info("Loading a previous data file")
with open(data_path, "rb") as fid:
data, var_model = pickle.load(fid)
else:
logger.info(
"Using EMHASS methods to retrieve the new forecast model train data"
)
retrieve_hass_conf, _, _ = get_yaml_parse(params, logger)
rh = RetrieveHass(
retrieve_hass_conf["hass_url"],
retrieve_hass_conf["long_lived_token"],
retrieve_hass_conf["optimization_time_step"],
retrieve_hass_conf["time_zone"],
params,
emhass_conf,
logger,
get_data_from_file=False,
)
days_list = get_days_list(days_to_retrieve)
var_list = [var_model]
rh.get_data(days_list, var_list)
with open(data_path, "wb") as fid:
pickle.dump((rh.df_final, var_model), fid, pickle.HIGHEST_PROTOCOL)
data = copy.deepcopy(rh.df_final)
y_axis_title = "Power (W)"
logger.info(data.describe())
fig = data.plot()
fig.layout.template = template
fig.update_yaxes(title_text=y_axis_title)
fig.update_xaxes(title_text="Time")
fig.show()
fig.write_image(
emhass_conf["docs_path"] / "images/inputs_power_load_forecast.svg",
width=1080,
height=0.8 * 1080,
)
data.index = pd.to_datetime(data.index)
data.sort_index(inplace=True)
data = data[~data.index.duplicated(keep="first")]
data_exo = pd.DataFrame(index=data.index)
data_exo = add_date_features(data_exo)
data_exo[var_model] = data[var_model]
data_exo = data_exo.interpolate(method="linear", axis=0, limit=None)
date_train = (
data_exo.index[-1] - pd.Timedelta("15days") + data_exo.index.freq
) # The last 15 days
date_split = (
data_exo.index[-1] - pd.Timedelta("48h") + data_exo.index.freq
) # The last 48h
data_train = data_exo.loc[:date_split, :]
data_test = data_exo.loc[date_split:, :]
steps = len(data_test)
if sklearn_model == "LinearRegression":
base_model = LinearRegression()
elif sklearn_model == "ElasticNet":
base_model = ElasticNet()
elif sklearn_model == "KNeighborsRegressor":
base_model = KNeighborsRegressor()
else:
logger.error("Passed sklearn model " + sklearn_model + " is not valid")
forecaster = ForecasterRecursive(regressor=base_model, lags=num_lags)
logger.info("Training a KNN regressor")
start_time = time.time()
forecaster.fit(y=data_train[var_model], exog=data_train.drop(var_model, axis=1))
logger.info(f"Elapsed time: {time.time() - start_time}")
# Predictions
predictions = forecaster.predict(
steps=steps, exog=data_train.drop(var_model, axis=1)
)
pred_metric = r2_score(data_test[var_model], predictions)
logger.info(f"Prediction R2 score: {pred_metric}")
# Plot
df = pd.DataFrame(index=data_exo.index, columns=["train", "test", "pred"])
df["train"] = data_train[var_model]
df["test"] = data_test[var_model]
df["pred"] = predictions
fig = df.plot()
fig.layout.template = template
fig.update_yaxes(title_text=y_axis_title)
fig.update_xaxes(title_text="Time")
fig.update_xaxes(range=[date_train + pd.Timedelta("10days"), data_exo.index[-1]])
fig.show()
fig.write_image(
emhass_conf["docs_path"] / "images/load_forecast_knn_bare.svg",
width=1080,
height=0.8 * 1080,
)
logger.info("Simple backtesting")
start_time = time.time()
metric, predictions_backtest = backtesting_forecaster(
forecaster=forecaster,
y=data_train[var_model],
exog=data_train.drop(var_model, axis=1),
initial_train_size=None,
fixed_train_size=False,
steps=num_lags,
metric=neg_r2_score,
refit=False,
verbose=False,
)
logger.info(f"Elapsed time: {time.time() - start_time}")
logger.info(f"Backtest R2 score: {-metric}")
df = pd.DataFrame(index=data_exo.index, columns=["train", "pred"])
df["train"] = data_exo[var_model]
df["pred"] = predictions_backtest
fig = df.plot()
fig.layout.template = template
fig.update_yaxes(title_text=y_axis_title)
fig.update_xaxes(title_text="Time")
fig.show()
fig.write_image(
emhass_conf["docs_path"] / "images/load_forecast_knn_bare_backtest.svg",
width=1080,
height=0.8 * 1080,
)
# Bayesian search hyperparameter and lags with Skopt
# Lags used as predictors
lags_grid = [6, 12, 24, 36, 48, 60, 72]
# Regressor hyperparameters search space
def search_space(trial):
search_space = {
"n_neighbors": trial.suggest_int("n_neighbors", 2, 20),
"leaf_size": trial.suggest_int("leaf_size", 20, 40),
"weights": trial.suggest_categorical("weights", ["uniform", "distance"]),
"lags": trial.suggest_categorical("lags", [6, 12, 24, 36, 48, 60, 72]),
}
return search_space
logger.info("Backtesting and bayesian hyperparameter optimization")
start_time = time.time()
cv = TimeSeriesFold(
steps=num_lags,
initial_train_size=len(data_exo.loc[:date_train]),
fixed_train_size=True,
gap=0,
skip_folds=None,
allow_incomplete_fold=True,
refit=True,
)
results, optimize_results_object = bayesian_search_forecaster(
forecaster=forecaster,
y=data_train[var_model],
exog=data_train.drop(var_model, axis=1),
cv=cv,
search_space=search_space,
metric=neg_r2_score,
n_trials=10,
random_state=123,
return_best=True,
)
logger.info(f"Elapsed time: {time.time() - start_time}")
logger.info(results)
logger.info(optimize_results_object)
save_forecaster(forecaster, file_name="forecaster.py", verbose=False)
forecaster_loaded = load_forecaster("forecaster.py", verbose=False)
predictions_loaded = forecaster.predict(
steps=steps, exog=data_train.drop(var_model, axis=1)
)
df = pd.DataFrame(
index=data_exo.index,
columns=["train", "test", "pred", "pred_naive", "pred_optim"],
)
freq_hours = df.index.freq.delta.seconds / 3600
lags_opt = int(np.round(len(results.iloc[0]["lags"])))
days_needed = int(np.round(lags_opt * freq_hours / 24))
shift = int(24 / freq_hours)
P_load_forecast_naive = pd.concat([data_exo.iloc[-shift:], data_exo.iloc[:-shift]])
df["train"] = data_train[var_model]
df["test"] = data_test[var_model]
df["pred"] = predictions
df["pred_naive"] = P_load_forecast_naive[var_model].values
df["pred_optim"] = predictions_loaded
fig = df.plot()
fig.layout.template = template
fig.update_yaxes(title_text=y_axis_title)
fig.update_xaxes(title_text="Time")
fig.update_xaxes(range=[date_train + pd.Timedelta("10days"), data_exo.index[-1]])
fig.show()
fig.write_image(
emhass_conf["docs_path"] / "images/load_forecast_knn_optimized.svg",
width=1080,
height=0.8 * 1080,
)
logger.info(
"######################## Train/Test R2 score comparison ######################## "
)
pred_naive_metric_train = r2_score(
df.loc[data_train.index, "train"], df.loc[data_train.index, "pred_naive"]
)
logger.info(
f"R2 score for naive prediction in train period (backtest): {pred_naive_metric_train}"
)
pred_optim_metric_train = -results.iloc[0]["neg_r2_score"]
logger.info(
f"R2 score for optimized prediction in train period: {pred_optim_metric_train}"
)
pred_metric_test = r2_score(
df.loc[data_test.index[1:-1], "test"], df.loc[data_test[1:-1].index, "pred"]
)
logger.info(
f"R2 score for non-optimized prediction in test period: {pred_metric_test}"
)
pred_naive_metric_test = r2_score(
df.loc[data_test.index[1:-1], "test"],
df.loc[data_test[1:-1].index, "pred_naive"],
)
logger.info(
f"R2 score for naive persistance forecast in test period: {pred_naive_metric_test}"
)
pred_optim_metric_test = r2_score(
df.loc[data_test.index[1:-1], "test"],
df.loc[data_test[1:-1].index, "pred_optim"],
)
logger.info(
f"R2 score for optimized prediction in test period: {pred_optim_metric_test}"
)
logger.info(
"################################################################################ "
)
logger.info("Number of optimal lags obtained: " + str(lags_opt))
logger.info("Prediction in production using last_window")
# Let's perform a naive load forecast for comparison
retrieve_hass_conf, optim_conf, plant_conf = get_yaml_parse(
params, logger
)
fcst = Forecast(
retrieve_hass_conf, optim_conf, plant_conf, params, emhass_conf, logger
)
P_load_forecast = fcst.get_load_forecast(method="naive")
# Then retrieve some data and perform a prediction mocking a production env
rh = RetrieveHass(
retrieve_hass_conf["hass_url"],
retrieve_hass_conf["long_lived_token"],
retrieve_hass_conf["optimization_time_step"],
retrieve_hass_conf["time_zone"],
params,
emhass_conf,
logger,
get_data_from_file=False,
)
days_list = get_days_list(days_needed)
var_model = retrieve_hass_conf["sensor_power_load_no_var_loads"]
var_list = [var_model]
rh.get_data(days_list, var_list)
data_last_window = copy.deepcopy(rh.df_final)
data_last_window = add_date_features(data_last_window)
data_last_window = data_last_window.interpolate(method="linear", axis=0, limit=None)
predictions_prod = forecaster.predict(
steps=lags_opt,
last_window=data_last_window[var_model],
exog=data_last_window.drop(var_model, axis=1),
)
df = pd.DataFrame(index=P_load_forecast.index, columns=["pred_naive", "pred_prod"])
df["pred_naive"] = P_load_forecast
df["pred_prod"] = predictions_prod
fig = df.plot()
fig.layout.template = template
fig.update_yaxes(title_text=y_axis_title)
fig.update_xaxes(title_text="Time")
fig.show()
fig.write_image(
emhass_conf["docs_path"] / "images/load_forecast_production.svg",
width=1080,
height=0.8 * 1080,
)