Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

InconsistentVersionWarning #463

Closed
gieljnssns opened this issue Feb 17, 2025 · 2 comments
Closed

InconsistentVersionWarning #463

gieljnssns opened this issue Feb 17, 2025 · 2 comments

Comments

@gieljnssns
Copy link
Contributor

Describe the bug
I have made the update to v0.12.7 and now I see some InconsistentVersionWarning in the logs

To Reproduce
Update to v0.12.7 and look at the logs

Expected behavior
I don't know if this an error or this can be ignored

Screenshots
If applicable, add screenshots to help explain your problem.

Home Assistant installation type

  • Home Assistant OS

Your hardware

  • OS: HA OS,
  • Architecture: amd64

EMHASS installation type

  • Add-on

Additional context

[2025-02-17 13:25:00 +0100] [27] [INFO]  >> Obtaining params: 
[2025-02-17 13:25:00 +0100] [27] [INFO] Passed runtime parameters: {'prod_price_forecast': [-0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11], 'load_cost_forecast': [0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535], 'pv_power_forecast': [5233, 4280, 4163, 4001, 3735, 3104, 2433, 1375, 543, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'prediction_horizon': 22, 'alpha': 1, 'beta': 0, 'num_def_loads': 5, 'p_deferrable_nom': [2000, 2000, 1700, 900, 2000], 'def_total_hours': [0.0, 0.0, 0.0, 2.0, 0.0], 'set_def_constant': [True, True, True, True, True], 'def_start_timestep': [0, 0, 0, 0, 0], 'def_end_timestep': [0, 0, 0, 20, 0], 'def_current_state': [False, False, False, True, False]}
[2025-02-17 13:25:00 +0100] [27] [INFO]  >> Setting input data dict
[2025-02-17 13:25:00 +0100] [27] [INFO] Setting up needed data
[2025-02-17 13:25:00 +0100] [27] [INFO] Retrieve hass get data method initiated...
[2025-02-17 13:25:00 +0100] [27] [INFO] Retrieving weather forecast data using method = list
[2025-02-17 13:25:00 +0100] [27] [INFO] Retrieving data from hass for load forecast using method = mlforecaster
[2025-02-17 13:25:00 +0100] [27] [INFO] Retrieve hass get data method initiated...
/app/.venv/lib/python3.12/site-packages/sklearn/base.py:380: InconsistentVersionWarning:
Trying to unpickle estimator KNeighborsRegressor from version 1.6.0 when using version 1.6.1. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:
https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Number of ML predict forcast data generated (lags_opt): 48
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Number of forcast dates obtained: 22
[2025-02-17 13:25:02 +0100] [27] [INFO]  >> Performing naive MPC optimization...
[2025-02-17 13:25:02 +0100] [27] [INFO] Performing naive MPC optimization
[2025-02-17 13:25:02 +0100] [27] [INFO] Perform an iteration of a naive MPC controller
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 0: Proposed optimization window: 0 --> 0
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 0: Validated optimization window: 0 --> 0
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 1: Proposed optimization window: 0 --> 0
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 1: Validated optimization window: 0 --> 0
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 2: Proposed optimization window: 0 --> 0
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 2: Validated optimization window: 0 --> 0
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 3: Proposed optimization window: 0 --> 20
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 3: Validated optimization window: 0 --> 20
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 4: Proposed optimization window: 0 --> 0
[2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 4: Validated optimization window: 0 --> 0
[2025-02-17 13:25:02 +0100] [27] [INFO] Status: Optimal
[2025-02-17 13:25:02 +0100] [27] [INFO] Total value of the Cost function = -2.12
[2025-02-17 13:25:42 +0100] [27] [INFO]  >> Obtaining params: 
[2025-02-17 13:25:42 +0100] [27] [INFO] Passed runtime parameters: {'custom_deferrable_forecast_id': [{'entity_id': 'sensor.emhass_wasmachien', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass wasmachien'}, {'entity_id': 'sensor.emhass_droogkast', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass droogkast'}, {'entity_id': 'sensor.emhass_afwasmachien', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass afwasmachien'}, {'entity_id': 'sensor.emhass_warmtepompboiler', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass warmtepompboiler'}, {'entity_id': 'sensor.emhass_warmtepomp', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass warmtepomp'}], 'custom_pv_forecast_id': {'entity_id': 'sensor.emhass_pv_forecast', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass pv forecast'}, 'custom_load_forecast_id': {'entity_id': 'sensor.emhass_load_forecast', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass load forecast'}, 'custom_grid_forecast_id': {'entity_id': 'sensor.emhass_grid_forecast', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass grid forecast'}, 'custom_unit_load_cost_id': {'entity_id': 'sensor.emhass_load_cost', 'unit_of_measurement': '€/kWh', 'friendly_name': 'Emhass load cost'}, 'custom_unit_prod_price_id': {'entity_id': 'sensor.emhass_prod_price', 'unit_of_measurement': '€/kWh', 'friendly_name': 'Emhass production price'}, 'custom_pv_curtailment_id': {'entity_id': 'sensor.emhass_curtailment', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass curtailment'}, 'publish_prefix': ''}
[2025-02-17 13:25:42 +0100] [27] [INFO]  >> Setting input data dict
[2025-02-17 13:25:42 +0100] [27] [INFO] Setting up needed data
[2025-02-17 13:25:42 +0100] [27] [INFO]  >> Publishing data...
[2025-02-17 13:25:42 +0100] [27] [INFO] Publishing data to HASS instance
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_pv_forecast = 5233
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_load_forecast = 1029.36
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_wasmachien = 0.0
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_droogkast = 0.0
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_afwasmachien = 0.0
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_warmtepompboiler = 900.0
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_warmtepomp = 0.0
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_grid_forecast = -3303.64
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.total_cost_fun_value = -2.12
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.optim_status = Optimal
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_load_cost = 0.1645
[2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_prod_price = -0.11
[2025-02-17 13:26:11 +0100] [27] [INFO] EMHASS server online, serving index.html...
[2025-02-17 13:27:01 +0100] [27] [INFO] EMHASS server online, serving index.html...
[2025-02-17 13:30:00 +0100] [27] [INFO]  >> Obtaining params: 
[2025-02-17 13:30:00 +0100] [27] [INFO] Passed runtime parameters: {'prod_price_forecast': [-0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11], 'load_cost_forecast': [0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535], 'pv_power_forecast': [4881, 4280, 4163, 4001, 3735, 3104, 2433, 1375, 543, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'prediction_horizon': 22, 'alpha': 1, 'beta': 0, 'num_def_loads': 5, 'p_deferrable_nom': [2000, 2000, 1700, 900, 2000], 'def_total_hours': [0.0, 0.0, 0.0, 2.0, 0.0], 'set_def_constant': [True, True, True, True, True], 'def_start_timestep': [0, 0, 0, 0, 0], 'def_end_timestep': [0, 0, 0, 20, 0], 'def_current_state': [False, False, False, True, False]}
[2025-02-17 13:30:00 +0100] [27] [INFO]  >> Setting input data dict
[2025-02-17 13:30:00 +0100] [27] [INFO] Setting up needed data
[2025-02-17 13:30:00 +0100] [27] [INFO] Retrieve hass get data method initiated...
[2025-02-17 13:30:00 +0100] [27] [INFO] Retrieving weather forecast data using method = list
[2025-02-17 13:30:00 +0100] [27] [INFO] Retrieving data from hass for load forecast using method = mlforecaster
[2025-02-17 13:30:00 +0100] [27] [INFO] Retrieve hass get data method initiated...
/app/.venv/lib/python3.12/site-packages/sklearn/base.py:380: InconsistentVersionWarning:
Trying to unpickle estimator KNeighborsRegressor from version 1.6.0 when using version 1.6.1. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:
https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations
[2025-02-17 13:30:02 +0100] [27] [DEBUG] Number of ML predict forcast data generated (lags_opt): 48
@davidusb-geek
Copy link
Owner

Just try to re-train your ML models

@gieljnssns
Copy link
Contributor Author

A refit of my model has solved this. Thanks

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants