We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Describe the bug I have made the update to v0.12.7 and now I see some InconsistentVersionWarning in the logs
To Reproduce Update to v0.12.7 and look at the logs
Expected behavior I don't know if this an error or this can be ignored
Screenshots If applicable, add screenshots to help explain your problem.
Home Assistant installation type
Your hardware
EMHASS installation type
Additional context
[2025-02-17 13:25:00 +0100] [27] [INFO] >> Obtaining params: [2025-02-17 13:25:00 +0100] [27] [INFO] Passed runtime parameters: {'prod_price_forecast': [-0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11], 'load_cost_forecast': [0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535], 'pv_power_forecast': [5233, 4280, 4163, 4001, 3735, 3104, 2433, 1375, 543, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'prediction_horizon': 22, 'alpha': 1, 'beta': 0, 'num_def_loads': 5, 'p_deferrable_nom': [2000, 2000, 1700, 900, 2000], 'def_total_hours': [0.0, 0.0, 0.0, 2.0, 0.0], 'set_def_constant': [True, True, True, True, True], 'def_start_timestep': [0, 0, 0, 0, 0], 'def_end_timestep': [0, 0, 0, 20, 0], 'def_current_state': [False, False, False, True, False]} [2025-02-17 13:25:00 +0100] [27] [INFO] >> Setting input data dict [2025-02-17 13:25:00 +0100] [27] [INFO] Setting up needed data [2025-02-17 13:25:00 +0100] [27] [INFO] Retrieve hass get data method initiated... [2025-02-17 13:25:00 +0100] [27] [INFO] Retrieving weather forecast data using method = list [2025-02-17 13:25:00 +0100] [27] [INFO] Retrieving data from hass for load forecast using method = mlforecaster [2025-02-17 13:25:00 +0100] [27] [INFO] Retrieve hass get data method initiated... /app/.venv/lib/python3.12/site-packages/sklearn/base.py:380: InconsistentVersionWarning: Trying to unpickle estimator KNeighborsRegressor from version 1.6.0 when using version 1.6.1. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to: https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations [2025-02-17 13:25:02 +0100] [27] [DEBUG] Number of ML predict forcast data generated (lags_opt): 48 [2025-02-17 13:25:02 +0100] [27] [DEBUG] Number of forcast dates obtained: 22 [2025-02-17 13:25:02 +0100] [27] [INFO] >> Performing naive MPC optimization... [2025-02-17 13:25:02 +0100] [27] [INFO] Performing naive MPC optimization [2025-02-17 13:25:02 +0100] [27] [INFO] Perform an iteration of a naive MPC controller [2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 0: Proposed optimization window: 0 --> 0 [2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 0: Validated optimization window: 0 --> 0 [2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 1: Proposed optimization window: 0 --> 0 [2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 1: Validated optimization window: 0 --> 0 [2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 2: Proposed optimization window: 0 --> 0 [2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 2: Validated optimization window: 0 --> 0 [2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 3: Proposed optimization window: 0 --> 20 [2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 3: Validated optimization window: 0 --> 20 [2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 4: Proposed optimization window: 0 --> 0 [2025-02-17 13:25:02 +0100] [27] [DEBUG] Deferrable load 4: Validated optimization window: 0 --> 0 [2025-02-17 13:25:02 +0100] [27] [INFO] Status: Optimal [2025-02-17 13:25:02 +0100] [27] [INFO] Total value of the Cost function = -2.12 [2025-02-17 13:25:42 +0100] [27] [INFO] >> Obtaining params: [2025-02-17 13:25:42 +0100] [27] [INFO] Passed runtime parameters: {'custom_deferrable_forecast_id': [{'entity_id': 'sensor.emhass_wasmachien', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass wasmachien'}, {'entity_id': 'sensor.emhass_droogkast', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass droogkast'}, {'entity_id': 'sensor.emhass_afwasmachien', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass afwasmachien'}, {'entity_id': 'sensor.emhass_warmtepompboiler', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass warmtepompboiler'}, {'entity_id': 'sensor.emhass_warmtepomp', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass warmtepomp'}], 'custom_pv_forecast_id': {'entity_id': 'sensor.emhass_pv_forecast', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass pv forecast'}, 'custom_load_forecast_id': {'entity_id': 'sensor.emhass_load_forecast', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass load forecast'}, 'custom_grid_forecast_id': {'entity_id': 'sensor.emhass_grid_forecast', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass grid forecast'}, 'custom_unit_load_cost_id': {'entity_id': 'sensor.emhass_load_cost', 'unit_of_measurement': '€/kWh', 'friendly_name': 'Emhass load cost'}, 'custom_unit_prod_price_id': {'entity_id': 'sensor.emhass_prod_price', 'unit_of_measurement': '€/kWh', 'friendly_name': 'Emhass production price'}, 'custom_pv_curtailment_id': {'entity_id': 'sensor.emhass_curtailment', 'unit_of_measurement': 'W', 'friendly_name': 'Emhass curtailment'}, 'publish_prefix': ''} [2025-02-17 13:25:42 +0100] [27] [INFO] >> Setting input data dict [2025-02-17 13:25:42 +0100] [27] [INFO] Setting up needed data [2025-02-17 13:25:42 +0100] [27] [INFO] >> Publishing data... [2025-02-17 13:25:42 +0100] [27] [INFO] Publishing data to HASS instance [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_pv_forecast = 5233 [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_load_forecast = 1029.36 [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_wasmachien = 0.0 [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_droogkast = 0.0 [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_afwasmachien = 0.0 [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_warmtepompboiler = 900.0 [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_warmtepomp = 0.0 [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_grid_forecast = -3303.64 [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.total_cost_fun_value = -2.12 [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.optim_status = Optimal [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_load_cost = 0.1645 [2025-02-17 13:25:42 +0100] [27] [INFO] Successfully posted to sensor.emhass_prod_price = -0.11 [2025-02-17 13:26:11 +0100] [27] [INFO] EMHASS server online, serving index.html... [2025-02-17 13:27:01 +0100] [27] [INFO] EMHASS server online, serving index.html... [2025-02-17 13:30:00 +0100] [27] [INFO] >> Obtaining params: [2025-02-17 13:30:00 +0100] [27] [INFO] Passed runtime parameters: {'prod_price_forecast': [-0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11, -0.11], 'load_cost_forecast': [0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.174497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535, 0.164497535], 'pv_power_forecast': [4881, 4280, 4163, 4001, 3735, 3104, 2433, 1375, 543, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'prediction_horizon': 22, 'alpha': 1, 'beta': 0, 'num_def_loads': 5, 'p_deferrable_nom': [2000, 2000, 1700, 900, 2000], 'def_total_hours': [0.0, 0.0, 0.0, 2.0, 0.0], 'set_def_constant': [True, True, True, True, True], 'def_start_timestep': [0, 0, 0, 0, 0], 'def_end_timestep': [0, 0, 0, 20, 0], 'def_current_state': [False, False, False, True, False]} [2025-02-17 13:30:00 +0100] [27] [INFO] >> Setting input data dict [2025-02-17 13:30:00 +0100] [27] [INFO] Setting up needed data [2025-02-17 13:30:00 +0100] [27] [INFO] Retrieve hass get data method initiated... [2025-02-17 13:30:00 +0100] [27] [INFO] Retrieving weather forecast data using method = list [2025-02-17 13:30:00 +0100] [27] [INFO] Retrieving data from hass for load forecast using method = mlforecaster [2025-02-17 13:30:00 +0100] [27] [INFO] Retrieve hass get data method initiated... /app/.venv/lib/python3.12/site-packages/sklearn/base.py:380: InconsistentVersionWarning: Trying to unpickle estimator KNeighborsRegressor from version 1.6.0 when using version 1.6.1. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to: https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations [2025-02-17 13:30:02 +0100] [27] [DEBUG] Number of ML predict forcast data generated (lags_opt): 48
The text was updated successfully, but these errors were encountered:
Just try to re-train your ML models
Sorry, something went wrong.
A refit of my model has solved this. Thanks
No branches or pull requests
Describe the bug
I have made the update to v0.12.7 and now I see some InconsistentVersionWarning in the logs
To Reproduce
Update to v0.12.7 and look at the logs
Expected behavior
I don't know if this an error or this can be ignored
Screenshots
If applicable, add screenshots to help explain your problem.
Home Assistant installation type
Your hardware
EMHASS installation type
Additional context
The text was updated successfully, but these errors were encountered: