-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
92 lines (68 loc) · 3.04 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import sys
import cv2
def get_img_output_length(width, height):
def get_output_length(input_length):
return input_length//16
return get_output_length(width), get_output_length(height)
def get_data(input_path):
"""Parse the data from annotation file
Args:
input_path: annotation file path
Returns:
all_data: list(filepath, width, height, list(bboxes))
classes_count: dict{key:class_name, value:count_num}
e.g. {'Car': 2383, 'Mobile phone': 1108, 'Person': 3745}
class_mapping: dict{key:class_name, value: idx}
e.g. {'Car': 0, 'Mobile phone': 1, 'Person': 2}
"""
found_bg = False
all_imgs = {}
classes_count = {}
class_mapping = {}
i = 1
with open(input_path, 'r') as f:
print('Parsing annotation files')
for line in f:
# Print process
sys.stdout.write('\r' + 'idx=' + str(i))
i += 1
#line_split = line.strip().split(',')
#(filename, y1, x1, y2, x2, class_name) = line_split
print(line)
filename = line.split()[0]
y1, x1, y2, x2, class_name = line.split()[1].split(',')
if class_name not in classes_count:
classes_count[class_name] = 1
else:
classes_count[class_name] += 1
if class_name not in class_mapping:
if class_name == 'bg' and found_bg == False:
print(
'Found class name bg.Will be treated as background (this is usually for hard negative mining).')
found_bg = True
class_mapping[class_name] = len(class_mapping)
if filename not in all_imgs:
all_imgs[filename] = {}
img = cv2.imread(filename)
(rows, cols) = img.shape[:2]
all_imgs[filename]['filepath'] = filename
all_imgs[filename]['width'] = cols
all_imgs[filename]['height'] = rows
all_imgs[filename]['bboxes'] = []
# if np.random.randint(0,6) > 0:
# all_imgs[filename]['imageset'] = 'trainval'
# else:
# all_imgs[filename]['imageset'] = 'test'
all_imgs[filename]['bboxes'].append(
{'class': class_name, 'x1': int(x1), 'x2': int(x2), 'y1': int(y1), 'y2': int(y2)})
all_data = []
for key in all_imgs:
all_data.append(all_imgs[key])
# make sure the bg class is last in the list
if found_bg:
if class_mapping['bg'] != len(class_mapping) - 1:
key_to_switch = [key for key in class_mapping.keys() if class_mapping[key] == len(class_mapping) - 1][0]
val_to_switch = class_mapping['bg']
class_mapping['bg'] = len(class_mapping) - 1
class_mapping[key_to_switch] = val_to_switch
return all_data, classes_count, class_mapping