-
Notifications
You must be signed in to change notification settings - Fork 0
/
hfsline.c
158 lines (130 loc) · 3.38 KB
/
hfsline.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#include "hfsline.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#define H 6.6260755e-27
#define K 1.380658e-16
#define TBG 2.73
#define NSIG 2.0
static double *velocity_array;
static double *temperature_array;
static double *hfsline_array;
static double frequency;
static int nchan;
static double vrange[2];
static double lsrrange[2];
static int n_components; /* Number of hyperfine components */
static double *comp_voff_array; /* hyperfine component velocities */
static double *comp_relint_array; /* relative component intensity */
static double thin_tex; /* Thin line excitation temperature */
static double jfunc(double t, double nu) {
double to;
if(nu<1.0e-6) return t;
to = H*nu/K;
return to/(exp(to/t)-1.0);
}
void hfsline_init(int channels, double *varray, double *tarray, double nu, double vmin, double vmax, int ncomp, double *comp_voff, double *comp_relint, double default_tex) {
int i;
double vcompmin;
double vcompmax;
double vcompint;
hfsline_array = malloc(channels*sizeof(double));
if(hfsline_array==NULL) {
fprintf(stderr, "hill5_init: Out of memory.\n");
exit(1);
}
velocity_array=varray;
temperature_array=tarray;
nchan = channels;
frequency = nu;
vrange[0]=vmin;
vrange[1]=vmax;
vcompmin=comp_voff[0];
vcompmax=comp_voff[0];
for(i=1;i<ncomp;i++) {
if(comp_voff[i]<vcompmin) {
vcompmin = comp_voff[i];
}
else if(comp_voff[i]>vcompmax) {
vcompmax = comp_voff[i];
}
}
vcompint = vcompmax-vcompmin;
lsrrange[0]=vmin-vcompmin+(vmax-vmin-vcompint);
lsrrange[1]=vmax-vcompmax-(vmax-vmin-vcompint);
n_components = ncomp;
comp_voff_array = comp_voff;
comp_relint_array = comp_relint;
thin_tex = default_tex;
}
void hfsline_free() {
free(hfsline_array);
}
double *hfsline_getfit() {
return hfsline_array;
}
double hfsline_model(double tau, double v_lsr, double sigma, double tex) {
int i;
int j;
double resrms;
double resid;
double tauc; /* Optical Depth at Channel */
resrms=0.0;
for(i=0;i<nchan;i++) {
tauc = 0.0;
for(j=0;j<n_components;j++) {
tauc += tau*comp_relint_array[j]*exp(-pow((velocity_array[i]-v_lsr-comp_voff_array[j])/sigma,2.0)/2.0);
}
hfsline_array[i]=(jfunc(tex,frequency)-jfunc(TBG,frequency))*(1.0-exp(-tauc));
resid=temperature_array[i]-thinline_array[i];
if(velocity_array[i]>vrange[0] && velocity_array[i]<vrange[1]) {
resrms+=resid*resid;
}
}
return resrms;
}
/* Solvable 4 parameter thin line model, calculates fit and returns rms
residual.
parameters:
0: tau_0
1: v_lsr
2: sigma
3: Tex
*/
double hfsline_evaluate(double *params) {
double tau = params[0];
double v_lsr = params[1];
double sigma = params[2];
double tex = params[3];
double resrms;
if(sigma<0.0) {
return DBL_MAX;
}
if(v_lsr<lsrrange[0] || v_lsr>lsrrange[1]) {
return DBL_MAX;
}
if(tau<0.0) {
return DBL_MAX;
}
resrms = hfsline_model(tau,v_lsr,sigma,tex);
return resrms;
}
double hfsthinline_evaluate(double *params) {
double tau = params[0];
double v_lsr = params[1];
double sigma = params[2];
double resrms;
if(sigma<0.0) {
return DBL_MAX;
}
if(v_lsr<lsrrange[0] || v_lsr>lsrrange[1]) {
return DBL_MAX;
}
if(tau<0.0) {
return DBL_MAX;
}
/* Use static excitation of thin line */
resrms = hfsline_model(tau,v_lsr,sigma,thin_tex);
return resrms;
}