-
Notifications
You must be signed in to change notification settings - Fork 0
/
hyperfine_model.c
134 lines (110 loc) · 2.99 KB
/
hyperfine_model.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include "hyperfine_model.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#define H 6.6260755e-27
#define K 1.380658e-16
#define TBG 2.73
#define NSIG 2.0
static double jfunc(double t, double nu) {
double to;
if(nu<1.0e-6) return t;
to = H*nu/K;
return to/(exp(to/t)-1.0);
}
double get_min_lsr(hyperfine_struct *st) {
return st->lsrrange[0];
}
double get_max_lsr(hyperfine_struct *st) {
return st->lsrrange[1];
}
void hyperfine_init(hyperfine_struct *st, int channels, double *varray, double *tarray, double nu, double vmin, double vmax, int ncomp, double *comp_voff, double *comp_relint) {
int i;
double vcompmin;
double vcompmax;
double vcompint;
st->hyperfine_array = malloc(channels*sizeof(double));
if(st->hyperfine_array==NULL) {
fprintf(stderr, "hyperfine_init: Out of memory.\n");
exit(1);
}
st->velocity_array=varray;
st->temperature_array=tarray;
st->nchan = channels;
st->frequency = nu;
st->vrange[0]=vmin;
st->vrange[1]=vmax;
vcompmin=comp_voff[0];
vcompmax=comp_voff[0];
for(i=1;i<ncomp;i++) {
if(comp_voff[i]<vcompmin) {
vcompmin=comp_voff[i];
}
else if(comp_voff[i]>vcompmax) {
vcompmax=comp_voff[i];
}
}
vcompint = vcompmax-vcompmin;
/* CHANGE THESE VALUES */
/*
st->lsrrange[0]=vmin-vcompmin+2.0*(vmax-vmin-vcompint)/6.0;
st->lsrrange[1]=vmax-vcompmax-2.0*(vmax-vmin-vcompint)/6.0;
*/
st->lsrrange[0]=vmin;
st->lsrrange[1]=vmax;
st->n_components = ncomp;
st->comp_voff_array = comp_voff;
st->comp_relint_array = comp_relint;
}
void hyperfine_free(hyperfine_struct *st) {
free(st->hyperfine_array);
}
double *hyperfine_getfit(hyperfine_struct *st) {
return st->hyperfine_array;
}
double hyperfine_model(hyperfine_struct *st, double tau,double v_lsr, double sigma, double tex) {
int i, j;
double tauc; /* Optical depth at a particular channel */
double resrms;
double resid;
resrms=0.0;
for(i=0;i<st->nchan;i++) {
tauc=0.0;
for(j=0;j<st->n_components;j++) {
tauc += tau*st->comp_relint_array[j]*exp(-pow((st->velocity_array[i]-v_lsr-st->comp_voff_array[j])/sigma,2.0)/2.0);
}
st->hyperfine_array[i]=(jfunc(tex,st->frequency)-jfunc(TBG,st->frequency))*(1.0-exp(-tauc));
resid=st->temperature_array[i]-st->hyperfine_array[i];
if(st->velocity_array[i]>st->vrange[0] && st->velocity_array[i]<st->vrange[1]) {
resrms+=resid*resid;
}
}
return resrms;
}
/* Solvable 4 parameter hyperfine model, calculates fit and returns rms
residual.
parameters:
0: tau_0
1: v_lsr
2: sigma
3: Tex
*/
double hyperfine_evaluate(hyperfine_struct *st, double *params) {
double tau = params[0];
double v_lsr = params[1];
double sigma = params[2];
double tex = params[3];
double resrms;
if(sigma<0.0) {
return DBL_MAX;
}
if(v_lsr<st->lsrrange[0] || v_lsr>st->lsrrange[1]) {
return DBL_MAX;
}
if(tau<0.0) {
return DBL_MAX;
}
resrms = hyperfine_model(st,tau,v_lsr,sigma,tex);
return resrms;
}