-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathbackends.py
226 lines (162 loc) · 4.83 KB
/
backends.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import numpy
def convert_to_numpy(arr, backend, device="cpu"):
"""Converts an array or collection of arrays to np.ndarray"""
if isinstance(arr, (list, tuple)):
return [convert_to_numpy(subarr, backend, device) for subarr in arr]
if type(arr) is numpy.ndarray:
# this is stricter than isinstance,
# we don't want subclasses to get passed through
return arr
if backend == "cupy":
return arr.get()
if backend == "jax":
return numpy.asarray(arr)
if backend == "pytorch":
if device == "gpu":
return numpy.asarray(arr.cpu())
else:
return numpy.asarray(arr)
if backend == "tensorflow":
return numpy.asarray(arr)
if backend == "aesara":
return numpy.asarray(arr)
if backend == "taichi":
return arr.to_numpy()
raise RuntimeError(
f"Got unexpected array / backend combination: {type(arr)} / {backend}"
)
class BackendNotSupported(Exception):
pass
class BackendConflict(Exception):
pass
def check_backend_conflicts(backends, device):
if device == "gpu":
gpu_backends = set(backends) - {"numba", "numpy", "aesara"}
if len(gpu_backends) > 1:
raise BackendConflict(
f"Can only use one GPU backend at the same time (got: {gpu_backends})"
)
class SetupContext:
def __init__(self, f):
self._f = f
self._f_args = (tuple(), dict())
def __call__(self, *args, **kwargs):
self._f_args = (args, kwargs)
return self
def __enter__(self):
self._env = os.environ.copy()
args, kwargs = self._f_args
self._f_iter = iter(self._f(*args, **kwargs))
try:
module = next(self._f_iter)
except Exception as e:
raise BackendNotSupported(str(e)) from None
return module
def __exit__(self, *args, **kwargs):
try:
next(self._f_iter)
except StopIteration:
pass
os.environ = self._env
setup_function = SetupContext
# setup function definitions
@setup_function
def setup_numpy(device="cpu"):
import numpy
os.environ.update(
OMP_NUM_THREADS="1",
)
yield numpy
@setup_function
def setup_aesara(device="cpu"):
os.environ.update(
OMP_NUM_THREADS="1",
)
if device == "gpu":
raise RuntimeError("aesara uses JAX on GPU")
import aesara
# clang needs this, aesara#127
aesara.config.gcc__cxxflags = "-Wno-c++11-narrowing"
yield aesara
@setup_function
def setup_numba(device="cpu"):
os.environ.update(
OMP_NUM_THREADS="1",
)
import numba
yield numba
@setup_function
def setup_cupy(device="cpu"):
if device != "gpu":
raise RuntimeError("cupy requires GPU mode")
import cupy
yield cupy
@setup_function
def setup_jax(device="cpu"):
os.environ.update(
XLA_FLAGS=(
"--xla_cpu_multi_thread_eigen=false "
"intra_op_parallelism_threads=1 "
"inter_op_parallelism_threads=1 "
),
)
if device in ("cpu", "gpu"):
os.environ.update(JAX_PLATFORM_NAME=device)
import jax
if device == "tpu":
jax.config.update("jax_xla_backend", "tpu_driver")
jax.config.update("jax_backend_target", os.environ.get("JAX_BACKEND_TARGET"))
if device != "tpu":
# use 64 bit floats (not supported on TPU)
jax.config.update("jax_enable_x64", True)
if device == "gpu":
assert len(jax.devices()) > 0
yield jax
@setup_function
def setup_pytorch(device="cpu"):
os.environ.update(
OMP_NUM_THREADS="1",
)
import torch
if device == "gpu":
assert torch.cuda.is_available()
assert torch.cuda.device_count() > 0
yield torch
@setup_function
def setup_tensorflow(device="cpu"):
os.environ.update(
OMP_NUM_THREADS="1",
)
import tensorflow as tf
tf.config.threading.set_inter_op_parallelism_threads(1)
tf.config.threading.set_intra_op_parallelism_threads(1)
if device == "gpu":
gpus = tf.config.experimental.list_physical_devices("GPU")
assert gpus
else:
tf.config.experimental.set_visible_devices([], "GPU")
yield tf
TAICHI_SETUP_DONE = False
@setup_function
def setup_taichi(device="cpu"):
global TAICHI_SETUP_DONE
import taichi
if not TAICHI_SETUP_DONE:
taichi.init(
arch=taichi.cpu if device == "cpu" else taichi.gpu,
cpu_max_num_threads=1,
default_fp=taichi.f64,
)
TAICHI_SETUP_DONE = True
yield taichi
__backends__ = {
"numpy": setup_numpy,
"cupy": setup_cupy,
"jax": setup_jax,
"aesara": setup_aesara,
"numba": setup_numba,
"pytorch": setup_pytorch,
"tensorflow": setup_tensorflow,
"taichi": setup_taichi,
}