-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_normal_regressor.py
238 lines (192 loc) · 7.54 KB
/
inference_normal_regressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from sd_pipeline import Normal_continuous_SDPipeline
from diffusers import DDIMScheduler
import torch
import numpy as np
import random
from PIL import Image
import PIL
from typing import Callable, List, Optional, Union, Dict, Any
from dataset import AVACompressibilityDataset, AVACLIPDataset, AVAHpsDataset
from vae import encode
import os
from aesthetic_scorer import SinusoidalTimeMLP, MLPDiff
import wandb
import argparse
from tqdm import tqdm
import datetime
from compressibility_scorer import CompressibilityScorerDiff, jpeg_compressibility
from aesthetic_scorer import AestheticScorerDiff
from aesthetic_scorer import AestheticScorerDiff, hpsScorer
from utils import compute_metrics
from transformers import CLIPProcessor, CLIPModel
from brisque import BRISQUE
def parse():
parser = argparse.ArgumentParser(description="Inference")
parser.add_argument("--device", default="cuda")
parser.add_argument("--reward", type=str, default='compressibility')
parser.add_argument("--guidance", type=float, default=10)
parser.add_argument("--out_dir", type=str, default="")
parser.add_argument("--num_images", type=int, default=8)
parser.add_argument("--bs", type=int, default=50)
parser.add_argument("--n_size", type=int, default=25)
parser.add_argument("--num_group", type=int, default=3)
parser.add_argument("--val_bs", type=int, default=1)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--wandb_mode", type=str, default="online")
args = parser.parse_args()
return args
######### preparation ##########
args = parse()
device= args.device
save_file = True
assert args.num_images % args.num_group == 0
args.num_images *= args.n_size
## Image Seeds
if args.seed > 0:
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
shape = (args.num_images//args.bs, args.bs , 4, 64, 64)
init_latents = torch.randn(shape, device=device)
else:
init_latents = None
run_name = f"{args.reward}_guidance={args.guidance}"
unique_id = datetime.datetime.now().strftime("%Y.%m.%d_%H.%M.%S")
run_name = run_name + '_' + unique_id
if args.out_dir == "":
args.out_dir = 'logs/' + run_name
try:
os.makedirs(args.out_dir)
except:
pass
wandb.init(project=f"DPS-continuous-{args.reward}", name=run_name,config=args, mode=args.wandb_mode)
sd_model = Normal_continuous_SDPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", local_files_only=True)
sd_model.to(device)
# switch to DDIM scheduler
sd_model.scheduler = DDIMScheduler.from_config(sd_model.scheduler.config)
sd_model.scheduler.set_timesteps(50, device=device)
sd_model.vae.requires_grad_(False)
sd_model.text_encoder.requires_grad_(False)
sd_model.unet.requires_grad_(False)
sd_model.vae.eval()
sd_model.text_encoder.eval()
sd_model.unet.eval()
if args.reward == 'compressibility':
scorer = CompressibilityScorerDiff(dtype=torch.float32).to(device)
elif args.reward == 'aesthetic':
scorer = AestheticScorerDiff(dtype=torch.float32).to(device)
elif args.reward == 'hps':
scorer = hpsScorer(inference_dtype=torch.float32, device=device).to(device)
else:
raise ValueError("Invalid reward")
scorer.requires_grad_(False)
scorer.eval()
sd_model.setup_scorer(scorer)
# sd_model.set_target(args.target)
sd_model.set_reward(args.reward)
sd_model.set_guidance(args.guidance)
### introducing evaluation prompts
import prompts as prompts_file
if args.reward == 'hps':
eval_prompt_fn = getattr(prompts_file, 'eval_hps_v2')
else:
eval_prompt_fn = getattr(prompts_file, 'eval_aesthetic_animals')
image = []
eval_prompt_list = []
KL_list = []
for i in tqdm(range(args.num_images // args.bs), desc="Generating Images"):
wandb.log(
{"inner_iter": i}
)
if init_latents is None:
init_i = None
else:
init_i = init_latents[i]
eval_prompts, _ = zip(
*[eval_prompt_fn() for _ in range(args.bs)]
)
eval_prompts = list(eval_prompts)
eval_prompt_list.extend(eval_prompts)
image_, kl_loss = sd_model(eval_prompts, num_images_per_prompt=1, eta=1.0, latents=init_i) # List of PIL.Image objects
image.extend(image_)
KL_list.append(kl_loss)
KL_entropy = torch.mean(torch.stack(KL_list))
assert len(image) == len(eval_prompt_list)
#
# if save_file:
# log_dir = os.path.join(args.out_dir, "eval_vis")
# os.makedirs(log_dir, exist_ok=True)
#
# for idx, im in enumerate(image):
# prompt = eval_prompt_list[idx]
#
# im.save(f"{log_dir}/{idx:03d}_{prompt}.png")
#
# pil = im.resize((256, 256))
###### evaluation and metric #####
# CLIP model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
if args.reward == 'compressibility':
gt_dataset= AVACompressibilityDataset(image)
elif args.reward == 'aesthetic':
from importlib import resources
ASSETS_PATH = resources.files("assets")
eval_model = MLPDiff().to(device)
eval_model.requires_grad_(False)
eval_model.eval()
s = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth"), map_location=device, weights_only=True)
eval_model.load_state_dict(s)
gt_dataset= AVACLIPDataset(image)
elif args.reward == 'hps':
gt_dataset= AVAHpsDataset(image)
gt_dataloader = torch.utils.data.DataLoader(gt_dataset, batch_size=args.val_bs, shuffle=False)
with torch.no_grad():
eval_rewards = []
all_image_embeds = []
all_quality_score = []
for image_idx, inputs in enumerate(gt_dataloader):
inputs = inputs.to(device)
if args.reward == 'compressibility':
jpeg_compressibility_scores = jpeg_compressibility(inputs)
scores = torch.tensor(jpeg_compressibility_scores, dtype=inputs.dtype, device=inputs.device)
elif args.reward == 'aesthetic':
scores = eval_model(inputs)
scores = scores.squeeze(1)
elif args.reward == 'hps':
scores, _ = scorer(inputs, [eval_prompt_list[image_idx]], processed=False)
# record embedding
raw_image = image[image_idx]
inputs_clip = processor(images=raw_image, return_tensors="pt")
inputs_clip = {key: value.to(device) for key, value in inputs_clip.items()}
image_embed = clip_model.get_image_features(**inputs_clip) # bs * 512
all_image_embeds.append(image_embed.cpu())
# quality score
obj = BRISQUE(url=False)
quality_score = obj.score(img=np.asarray(image[image_idx]))
all_quality_score.append(max(quality_score, 0))
# reward
eval_rewards.extend(scores.tolist())
eval_rewards = torch.tensor(eval_rewards)
if save_file:
images = []
log_dir = os.path.join(args.out_dir, "eval_vis")
os.makedirs(log_dir, exist_ok=True)
np.save(f"{args.out_dir}/scores.npy", eval_rewards)
# Function to save array to a text file with commas
def save_array_to_text_file(array, file_path):
with open(file_path, 'w') as file:
array_str = ','.join(map(str, array.tolist()))
file.write(array_str + ',')
# Save the arrays to text files
save_array_to_text_file(eval_rewards, f"{args.out_dir}/eval_rewards.txt")
print("Arrays have been saved to text files.")
for idx, im in enumerate(image):
prompt = eval_prompt_list[idx]
reward = eval_rewards[idx]
im.save(f"{log_dir}/{idx:03d}_{prompt}_score={reward:2f}.png")
pil = im.resize((256, 256))
images.append(wandb.Image(pil, caption=f"{prompt:.25} | score:{reward:.2f}"))
wandb.log(
{"images": images}
)