|
| 1 | +from .graph import * |
| 2 | +from .fields import * |
| 3 | +from .utils import prepare_dataset |
| 4 | +import os |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +class ClassificationDataset: |
| 8 | + "Dataset class for classification task." |
| 9 | + def __init__(self): |
| 10 | + raise NotImplementedError |
| 11 | + |
| 12 | +class TranslationDataset: |
| 13 | + ''' |
| 14 | + Dataset class for translation task. |
| 15 | + By default, the source language shares the same vocabulary with the target language. |
| 16 | + ''' |
| 17 | + INIT_TOKEN = '<sos>' |
| 18 | + EOS_TOKEN = '<eos>' |
| 19 | + PAD_TOKEN = '<pad>' |
| 20 | + MAX_LENGTH = 50 |
| 21 | + def __init__(self, path, exts, train='train', valid='valid', test='test', vocab='vocab.txt', replace_oov=None): |
| 22 | + vocab_path = os.path.join(path, vocab) |
| 23 | + self.src = {} |
| 24 | + self.tgt = {} |
| 25 | + with open(os.path.join(path, train + '.' + exts[0]), 'r') as f: |
| 26 | + self.src['train'] = f.readlines() |
| 27 | + with open(os.path.join(path, train + '.' + exts[1]), 'r') as f: |
| 28 | + self.tgt['train'] = f.readlines() |
| 29 | + with open(os.path.join(path, valid + '.' + exts[0]), 'r') as f: |
| 30 | + self.src['valid'] = f.readlines() |
| 31 | + with open(os.path.join(path, valid + '.' + exts[1]), 'r') as f: |
| 32 | + self.tgt['valid'] = f.readlines() |
| 33 | + with open(os.path.join(path, test + '.' + exts[0]), 'r') as f: |
| 34 | + self.src['test'] = f.readlines() |
| 35 | + with open(os.path.join(path, test + '.' + exts[1]), 'r') as f: |
| 36 | + self.tgt['test'] = f.readlines() |
| 37 | + |
| 38 | + if not os.path.exists(vocab_path): |
| 39 | + self._make_vocab(vocab_path) |
| 40 | + |
| 41 | + vocab = Vocab(init_token=self.INIT_TOKEN, |
| 42 | + eos_token=self.EOS_TOKEN, |
| 43 | + pad_token=self.PAD_TOKEN, |
| 44 | + unk_token=replace_oov) |
| 45 | + vocab.load(vocab_path) |
| 46 | + self.vocab = vocab |
| 47 | + strip_func = lambda x: x[:self.MAX_LENGTH] |
| 48 | + self.src_field = Field(vocab, |
| 49 | + preprocessing=None, |
| 50 | + postprocessing=strip_func) |
| 51 | + self.tgt_field = Field(vocab, |
| 52 | + preprocessing=lambda seq: [self.INIT_TOKEN] + seq + [self.EOS_TOKEN], |
| 53 | + postprocessing=strip_func) |
| 54 | + |
| 55 | + def get_seq_by_id(self, idx, mode='train', field='src'): |
| 56 | + "get raw sequence in dataset by specifying index, mode(train/valid/test), field(src/tgt)" |
| 57 | + if field == 'src': |
| 58 | + return self.src[mode][idx].strip().split() |
| 59 | + else: |
| 60 | + return [self.INIT_TOKEN] + self.tgt[mode][idx].strip().split() + [self.EOS_TOKEN] |
| 61 | + |
| 62 | + def _make_vocab(self, path, thres=2): |
| 63 | + word_dict = {} |
| 64 | + for mode in ['train', 'valid', 'test']: |
| 65 | + for line in self.src[mode] + self.tgt[mode]: |
| 66 | + for token in line.strip().split(): |
| 67 | + if token not in word_dict: |
| 68 | + word_dict[token] = 0 |
| 69 | + else: |
| 70 | + word_dict[token] += 1 |
| 71 | + |
| 72 | + with open(path, 'w') as f: |
| 73 | + for k, v in word_dict.items(): |
| 74 | + if v > 2: |
| 75 | + print(k, file=f) |
| 76 | + |
| 77 | + @property |
| 78 | + def vocab_size(self): |
| 79 | + return len(self.vocab) |
| 80 | + |
| 81 | + @property |
| 82 | + def pad_id(self): |
| 83 | + return self.vocab[self.PAD_TOKEN] |
| 84 | + |
| 85 | + @property |
| 86 | + def sos_id(self): |
| 87 | + return self.vocab[self.INIT_TOKEN] |
| 88 | + |
| 89 | + @property |
| 90 | + def eos_id(self): |
| 91 | + return self.vocab[self.EOS_TOKEN] |
| 92 | + |
| 93 | + def __call__(self, graph_pool, mode='train', batch_size=32, k=1, devices=['cpu']): |
| 94 | + ''' |
| 95 | + Create a batched graph correspond to the mini-batch of the dataset. |
| 96 | + args: |
| 97 | + graph_pool: a GraphPool object for accelerating. |
| 98 | + mode: train/valid/test |
| 99 | + batch_size: batch size |
| 100 | + devices: ['cpu'] or a list of gpu ids. |
| 101 | + k: beam size(only required for test) |
| 102 | + ''' |
| 103 | + dev_id, gs = 0, [] |
| 104 | + src_data, tgt_data = self.src[mode], self.tgt[mode] |
| 105 | + n = len(src_data) |
| 106 | + order = np.random.permutation(n) if mode == 'train' else range(n) |
| 107 | + src_buf, tgt_buf = [], [] |
| 108 | + |
| 109 | + for idx in order: |
| 110 | + src_sample = self.src_field( |
| 111 | + src_data[idx].strip().split()) |
| 112 | + tgt_sample = self.tgt_field( |
| 113 | + tgt_data[idx].strip().split()) |
| 114 | + src_buf.append(src_sample) |
| 115 | + tgt_buf.append(tgt_sample) |
| 116 | + if len(src_buf) == batch_size: |
| 117 | + if mode == 'test': |
| 118 | + assert len(devices) == 1 # we only allow single gpu for inference |
| 119 | + yield graph_pool.beam(src_buf, self.sos_id, self.MAX_LENGTH, k, device=devices[0]) |
| 120 | + else: |
| 121 | + gs.append(graph_pool(src_buf, tgt_buf, device=devices[dev_id])) |
| 122 | + dev_id += 1 |
| 123 | + if dev_id == len(devices): |
| 124 | + yield gs if len(devices) > 1 else gs[0] |
| 125 | + dev_id, gs = 0, [] |
| 126 | + src_buf, tgt_buf = [], [] |
| 127 | + |
| 128 | + if len(src_buf) != 0: |
| 129 | + if mode == 'test': |
| 130 | + yield graph_pool.beam(src_buf, self.sos_id, self.MAX_LENGTH, k, device=devices[0]) |
| 131 | + else: |
| 132 | + gs.append(graph_pool(src_buf, tgt_buf, device=devices[dev_id])) |
| 133 | + yield gs if len(devices) > 1 else gs[0] |
| 134 | + |
| 135 | + def get_sequence(self, batch): |
| 136 | + "return a list of sequence from a list of index arrays" |
| 137 | + ret = [] |
| 138 | + filter_list = set([self.pad_id, self.sos_id, self.eos_id]) |
| 139 | + for seq in batch: |
| 140 | + try: |
| 141 | + l = seq.index(self.eos_id) |
| 142 | + except: |
| 143 | + l = len(seq) |
| 144 | + ret.append(' '.join(self.vocab[token] for token in seq[:l] if not token in filter_list)) |
| 145 | + return ret |
| 146 | + |
| 147 | +def get_dataset(dataset): |
| 148 | + "we wrapped a set of datasets as example" |
| 149 | + prepare_dataset(dataset) |
| 150 | + if dataset == 'babi': |
| 151 | + raise NotImplementedError |
| 152 | + elif dataset == 'copy' or dataset == 'sort': |
| 153 | + return TranslationDataset( |
| 154 | + 'data/{}'.format(dataset), |
| 155 | + ('in', 'out'), |
| 156 | + train='train', |
| 157 | + valid='valid', |
| 158 | + test='test', |
| 159 | + ) |
| 160 | + elif dataset == 'multi30k': |
| 161 | + return TranslationDataset( |
| 162 | + 'data/multi30k', |
| 163 | + ('en.atok', 'de.atok'), |
| 164 | + train='train', |
| 165 | + valid='val', |
| 166 | + test='test2016', |
| 167 | + replace_oov='<unk>' |
| 168 | + ) |
| 169 | + elif dataset == 'wmt14': |
| 170 | + return TranslationDataset( |
| 171 | + 'data/wmt14', |
| 172 | + ('en', 'de'), |
| 173 | + train='train.tok.clean.bpe.32000', |
| 174 | + valid='newstest2013.tok.bpe.32000', |
| 175 | + test='newstest2014.tok.bpe.32000', |
| 176 | + vocab='vocab.bpe.32000') |
| 177 | + else: |
| 178 | + raise KeyError() |
0 commit comments