@@ -226,8 +226,8 @@ def unique_and_compact_csc_formats(
226
226
... "n1": torch.LongTensor([1, 2]),
227
227
... "n2": torch.LongTensor([5, 6])}
228
228
>>> csc_formats = {
229
- ... "n1:e1:n2": CSCFormatBase(indptr=torch.tensor([0, 2, 3]),indices=N1),
230
- ... "n2:e2:n1": CSCFormatBase(indptr=torch.tensor([0, 1, 3]),indices=N2)}
229
+ ... "n1:e1:n2": gb. CSCFormatBase(indptr=torch.tensor([0, 2, 3]),indices=N1),
230
+ ... "n2:e2:n1": gb. CSCFormatBase(indptr=torch.tensor([0, 1, 3]),indices=N2)}
231
231
>>> unique_nodes, compacted_csc_formats = gb.unique_and_compact_csc_formats(
232
232
... csc_formats, unique_dst
233
233
... )
@@ -340,7 +340,7 @@ def compact_csc_format(
340
340
>>> import dgl.graphbolt as gb
341
341
>>> N1 = torch.LongTensor([1, 2, 2])
342
342
>>> N2 = torch.LongTensor([5, 6, 5])
343
- >>> csc_formats = {"n2:e2:n1": CSCFormatBase(indptr=torch.tensor([0, 1]),
343
+ >>> csc_formats = {"n2:e2:n1": gb. CSCFormatBase(indptr=torch.tensor([0, 1]),
344
344
... indices=torch.tensor([5]))}
345
345
>>> dst_nodes = {"n1": N1[:1]}
346
346
>>> original_row_node_ids, compacted_csc_formats = gb.compact_csc_format(
0 commit comments