-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBilateral_Filter.cpp
83 lines (71 loc) · 2.56 KB
/
Bilateral_Filter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
* @brief 双边滤波
* @author 吴驰域 3140100333
* @date 2017-05-10
*/
#include "Bilateral_Filter.h"
#include "math.h"
#include <stdio.h>
#define M_PI 3.14159265358979323846
// 一维高斯函数
double Gaussian(double x, double sigma)
{
return exp(-(x * x) / (2 * sigma * sigma)) / (sqrt(2 * M_PI) * sigma);
}
// 二维高斯函数
double Gaussian(double u, double v, double sigma)
{
return exp(-(u * u + v * v) / (2 * sigma * sigma)) / (2 * M_PI * sigma * sigma);
}
unsigned char* Bilateral_Filter(BITMAPFILEHEADER *bitmapFileHeader, BITMAPINFOHEADER *bitmapInfoHeader, unsigned char *bitmapData, int d, double sigma_color, double sigma_space)
{
int m = bitmapInfoHeader->biHeight;
int n = (bitmapInfoHeader->biWidth + 3) / 4 * 4 * 3;
unsigned char* newbitmapData = new unsigned char[m*n];
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j += 3)
{
// 计算邻域范围, x为水平y为垂直
int y_start = (i - d > 0) ? (i - d) : 0;
int x_start = (j - 3 * d > 0) ? (j - 3 * d) : 0;
int y_end = (i + d < m) ? (i + d) : m - 1;
int x_end = (j + 3 * d < n) ? (j + 3 * d) : n - 1;
/* 初始化临时变量, sum记录两个高斯函数的乘积,用来做归一化;ans记录高斯函数与像素值的乘积,即计算目标函数
temp_space和temp_color分别记录两个高斯函数的值 */
double sum0 = 0, sum1 = 0, sum2 = 0;
double ans0 = 0, ans1 = 0, ans2 = 0;
double temp_space = 0;
double temp_color0 = 0, temp_color1 = 0, temp_color2 = 0;
//printf("i=%d,j=%d\n", i, j);
if (i == 634 && j == 2175)
{
int wcy = 1;
}
// 开始枚举邻域内像素点
for (int k = y_start; k <= y_end; k++)
for (int l = x_start; l <= x_end; l += 3)
{
if (k == m && l == n)
continue;
// u, v记录当前点与邻域点的空间距离;ic记录颜色差距
int u = k - i, v = (l - j)/3;
int ic0 = bitmapData[i*n + j] - bitmapData[k*n + l];
int ic1 = bitmapData[i*n + j + 1] - bitmapData[k*n + l + 1];
int ic2 = bitmapData[i*n + j + 2] - bitmapData[k*n + l + 2];
temp_space = Gaussian(u, v, sigma_space);
temp_color0 = Gaussian(ic0, sigma_color);
temp_color1 = Gaussian(ic1, sigma_color);
temp_color2 = Gaussian(ic2, sigma_color);
sum0 += temp_space * temp_color0;
sum1 += temp_space * temp_color1;
sum2 += temp_space * temp_color2;
ans0 += temp_space * temp_color0 * bitmapData[k*n + l];
ans1 += temp_space * temp_color1 * bitmapData[k*n + l + 1];
ans2 += temp_space * temp_color2 * bitmapData[k*n + l + 2];
}
newbitmapData[i*n + j] = ans0 / sum0;
newbitmapData[i*n + j + 1] = ans1 / sum1;
newbitmapData[i*n + j + 2] = ans2 / sum2;
}
return newbitmapData;
}