-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithm.py
342 lines (270 loc) · 12.5 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import numpy as np
import pandas as pd
import cv2
from typing import List, Generator, Union
from abc import ABC
from collections.abc import Sequence
import types
from math import sqrt
__all__ = [
'FullSampler',
'SystematicSampler',
'RandomSampler',
'OnceRandomSampler',
'RandomTemporalSegmentSampler',
'OnceRandomTemporalSegmentSampler',
'LambdaSampler',
'synchronize_state',
]
class _MediaCapture:
def __init__(self, source):
self.source = source
if isinstance(source, Sequence) and not isinstance(source, str):
self.paths = list(source)
self.is_video = False
else:
self.cap = cv2.VideoCapture(source)
self.is_video = True
self._frame_id = 0
@classmethod
def from_video_capture(cls, cap):
raise NotImplementedError
def is_opened(self):
if self.is_video:
return self.cap.isOpened()
else:
return len(self.paths) > 0
def get(self, prop):
if self.is_video:
return self.cap.get(prop)
def set(self, prop, value):
if self.is_video:
return self.cap.set(prop, value)
def read(self):
if self.is_video:
self._frame_id = self.cap.get(cv2.CAP_PROP_POS_FRAMES)
ok, frame = self.cap.read()
else:
frame = cv2.imread(self.paths[self._frame_id])
ok = frame is not None
self._frame_id += 1
return ok, frame
def release(self):
if self.is_video:
self.cap.release()
else:
self.paths.clear()
def seek(self, frame_id):
if self.is_video:
if frame_id == self._frame_id:
return
else:
self.cap.set(cv2.CAP_PROP_POS_FRAMES, frame_id)
self._frame_id = frame_id
@property
def frame_count(self):
if self.is_video:
return int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
return len(self.paths)
@property
def fps(self):
if self.is_video:
return self.cap.get(cv2.CAP_PROP_FPS)
return 0.
@property
def frame_id(self):
return self._frame_id
def sample(self, frame_ids):
frames = []
for frame_id in frame_ids:
self.seek(frame_id)
ok, frame = self.read()
if not ok:
if self.is_video:
raise RuntimeError(f'Unable to read frame {frame_id} of {self.source}.')
else:
raise RuntimeError(f'Unable to read file {self.paths[frame_id]}.')
frames.append(frame)
return frames
def __str__(self):
ret = f'{self.__class__.__name__}'
ret += f'(source="{self.source}")' if self.is_video else f'(source={self.source})'
return ret
class _BaseSampler(ABC):
def __init__(self, n_frames=16):
if not n_frames:
raise ValueError(f'n_frames must be positive number, got {n_frames}.')
self.n_frames = n_frames
self._presampling_hooks = []
def __call__(self, source, start_frame=None, end_frame=None, sample_id=None):
cap = _MediaCapture(source)
if not cap.is_opened():
raise RuntimeError(f'{source} is invalid.')
if start_frame is None:
start_frame = 0
if end_frame is None:
end_frame = cap.frame_count - 1
elif end_frame > cap.frame_count - 1:
end_frame = cap.frame_count - 1
for hook in self._presampling_hooks:
hook(source, start_frame, end_frame, sample_id)
sampled_frame_ids = self._get_sampled_frame_ids(source, start_frame, end_frame, sample_id)
return cap.sample(sampled_frame_ids)
def _get_sampled_frame_ids(self, source, start_frame, end_frame, sample_id):
raise NotImplementedError
def register_presampling_hook(self, hook):
self._presampling_hooks.append(hook)
def clear_presampling_hooks(self):
self._presampling_hooks.clear()
class _BaseMemorizedSampler(_BaseSampler, ABC):
def __init__(self, n_frames=16):
super(_BaseMemorizedSampler, self).__init__(n_frames)
self.memory = {}
def __call__(self, source, start_frame=None, end_frame=None, sample_id=None):
if sample_id is None:
raise RuntimeError('sample_id is required.')
return super(_BaseMemorizedSampler, self).__call__(source, start_frame, end_frame, sample_id)
def clear(self):
self.memory.clear()
class FullSampler(_BaseSampler):
"""Sample all frames"""
def _get_sampled_frame_ids(self, source, start_frame, end_frame, sample_id=None):
return list(range(start_frame, end_frame))
class SystematicSampler(_BaseSampler):
def _get_sampled_frame_ids(self, source, start_frame, end_frame, sample_id=None):
sampled_frame_ids = np.linspace(start_frame, end_frame, self.n_frames)
return sampled_frame_ids.round().astype(np.int64)
class RandomSampler(_BaseSampler):
def _get_sampled_frame_ids(self, source, start_frame, end_frame, sample_id=None):
sampled_frame_ids = start_frame + np.random.rand(self.n_frames) * (end_frame - start_frame)
sampled_frame_ids.sort()
return sampled_frame_ids.round().astype(np.int64)
class OnceRandomSampler(_BaseMemorizedSampler, RandomSampler):
def _get_sampled_frame_ids(self, source, start_frame, end_frame, sample_id=None):
if sample_id in self.memory:
return self.memory[sample_id]
sampled_frame_ids = RandomSampler._get_sampled_frame_ids(self, source, start_frame, end_frame)
self.memory[sample_id] = sampled_frame_ids
return sampled_frame_ids
class RandomTemporalSegmentSampler(_BaseSampler):
def _get_sampled_frame_ids(self, source, start_frame, end_frame, sample_id=None):
segments = np.linspace(start_frame, end_frame, self.n_frames + 1)
segment_length = (end_frame - start_frame) / self.n_frames
sampled_frame_ids = segments[:-1] + np.random.rand(self.n_frames) * segment_length
return sampled_frame_ids.round().astype(np.int64)
class OnceRandomTemporalSegmentSampler(_BaseMemorizedSampler, RandomTemporalSegmentSampler):
def _get_sampled_frame_ids(self, source, start_frame, end_frame, sample_id=None):
if sample_id in self.memory:
return self.memory[sample_id]
sampled_frame_ids = RandomTemporalSegmentSampler._get_sampled_frame_ids(self, source, start_frame, end_frame)
self.memory[sample_id] = sampled_frame_ids
return sampled_frame_ids
class LambdaSampler(_BaseSampler):
def __init__(self, get_sampled_frame_ids_func):
super(LambdaSampler, self).__init__(n_frames=0)
self.get_sampled_frame_ids_func = get_sampled_frame_ids_func
def _get_sampled_frame_ids(self, source, start_frame, end_frame, sample_id=None):
return self.get_sampled_frame_ids_func(source, start_frame, end_frame)
class synchronize_state:
def __init__(self, samplers: Union[List[_BaseSampler], Generator]):
if isinstance(samplers, types.GeneratorType):
samplers = list(samplers)
self.samplers = samplers
self._random_state = None
def __enter__(self):
self._random_state = np.random.get_state()
for sampler in self.samplers:
sampler.register_presampling_hook(self._reuse_numpy_state)
def __exit__(self, exc_type, exc_val, exc_tb):
for sampler in self.samplers:
sampler.clear_presampling_hooks()
self._random_state = None
def _reuse_numpy_state(self, *args, **kwargs):
np.random.set_state(self._random_state)
def GramianAngularSumamationField(data_path):
data = pd.read_csv(data_path, header=None).values
ax_sub, ay_sub, az_sub, gx_sub, gy_sub, gz_sub = np.array(data[:, 0], float), np.array(data[:, 1], float), np.array(data[:, 2], float), np.array(data[:, 3], float), np.array(data[:, 4], float), np.array(data[:, 5], float)
mx_sub, my_sub = [], []
for abc in range(len(ax_sub)):
mx_sub.append(sqrt(ax_sub[abc] * ax_sub[abc] + ay_sub[abc] * ay_sub[abc] + az_sub[abc] * az_sub[abc]))
my_sub.append(sqrt(gx_sub[abc] * gx_sub[abc] + gy_sub[abc] * gy_sub[abc] + gz_sub[abc] * gz_sub[abc]))
max_ax_sub, max_ay_sub, max_az_sub, min_ax_sub, min_ay_sub, min_az_sub = np.max(ax_sub), np.max(ay_sub), np.max(
az_sub), np.min(
ax_sub), np.min(ay_sub), np.min(az_sub)
max_gx_sub, max_gy_sub, max_gz_sub, min_gx_sub, min_gy_sub, min_gz_sub = np.max(gx_sub), np.max(gy_sub), np.max(
gz_sub), np.min(
gx_sub), np.min(gy_sub), np.min(gz_sub)
max_mx_sub, max_my_sub, min_mx_sub, min_my_sub = np.max(mx_sub), np.max(my_sub), np.min(
mx_sub), np.min(my_sub)
t = len(ax_sub)
for a in range(t):
ax_sub[a] = (ax_sub[a] - min_ax_sub) / (max_ax_sub - min_ax_sub)
ay_sub[a] = (ay_sub[a] - min_ay_sub) / (max_ay_sub - min_ay_sub)
az_sub[a] = (az_sub[a] - min_az_sub) / (max_az_sub - min_az_sub)
gx_sub[a] = (gx_sub[a] - min_gx_sub) / (max_gx_sub - min_gx_sub)
gy_sub[a] = (gy_sub[a] - min_gy_sub) / (max_gy_sub - min_gy_sub)
gz_sub[a] = (gz_sub[a] - min_gz_sub) / (max_gz_sub - min_gz_sub)
mx_sub[a] = (mx_sub[a] - min_mx_sub) / (max_mx_sub - min_mx_sub)
my_sub[a] = (my_sub[a] - min_my_sub) / (max_my_sub - min_my_sub)
# mz_sub[a] = (mz_sub[a] - min_mz_sub) / (max_mz_sub - min_mz_sub)
phi_ax, phi_ay, phi_az, phi_gx, phi_gy, phi_gz, phi_mx, phi_my, phi_mz = np.zeros(t, dtype=float), np.zeros(t,
dtype=float), np.zeros(
t, dtype=float), np.zeros(t, dtype=float), np.zeros(t, dtype=float), np.zeros(t, dtype=float), np.zeros(t,
dtype=float), np.zeros(
t, dtype=float), np.zeros(t, dtype=float)
for a in range(len(ax_sub)):
phi_ax[a] = np.arcsin(ax_sub[a])
phi_ay[a] = np.arcsin(ay_sub[a])
phi_az[a] = np.arcsin(az_sub[a])
phi_gx[a] = np.arcsin(gx_sub[a])
phi_gy[a] = np.arcsin(gy_sub[a])
phi_gz[a] = np.arcsin(gz_sub[a])
phi_mx[a] = np.arcsin(mx_sub[a])
phi_my[a] = np.arcsin(my_sub[a])
# phi_mz[a] = np.arcsin(mz_sub[a])
ax_matrix, ay_matrix, az_matrix, gx_matrix, gy_matrix, gz_matrix, mx_matrix, my_matrix, mz_matrix = np.zeros(
(t, t)), np.zeros(
(t, t)), np.zeros(
(t, t)), np.zeros((t, t)), np.zeros((t, t)), np.zeros((t, t)), np.zeros((t, t)), np.zeros((t, t)), np.zeros(
(t, t))
for i in range(t):
for j in range(t):
ax_matrix[i, j] = phi_ax[i] - phi_ax[j]
ay_matrix[i, j] = phi_ay[i] - phi_ay[j]
az_matrix[i, j] = phi_az[i] - phi_az[j]
gx_matrix[i, j] = phi_gx[i] - phi_gx[j]
gy_matrix[i, j] = phi_gy[i] - phi_gy[j]
gz_matrix[i, j] = phi_gz[i] - phi_gz[j]
mx_matrix[i, j] = phi_mx[i] - phi_mx[j]
my_matrix[i, j] = phi_my[i] - phi_my[j]
# mz_matrix[i, j] = phi_mz[i] - phi_mz[j]
ax_matrix = np.sin(ax_matrix)
ay_matrix = np.sin(ay_matrix)
az_matrix = np.sin(az_matrix)
gx_matrix = np.sin(gx_matrix)
gy_matrix = np.sin(gy_matrix)
gz_matrix = np.sin(gz_matrix)
mx_matrix = np.sin(mx_matrix)
my_matrix = np.sin(my_matrix)
# mz_matrix = np.sin(mz_matrix)
ax_matrix = cv2.resize(ax_matrix, (224, 224))
ay_matrix = cv2.resize(ay_matrix, (224, 224))
az_matrix = cv2.resize(az_matrix, (224, 224))
gx_matrix = cv2.resize(gx_matrix, (224, 224))
gy_matrix = cv2.resize(gy_matrix, (224, 224))
gz_matrix = cv2.resize(gz_matrix, (224, 224))
mx_matrix = cv2.resize(mx_matrix, (224, 224))
my_matrix = cv2.resize(my_matrix, (224, 224))
result = np.dstack((ax_matrix, ay_matrix, az_matrix, gx_matrix, gy_matrix, gz_matrix, mx_matrix, my_matrix))
result = result.transpose(2, 0, 1)
result = np.expand_dims(result, axis=0)
return np.ascontiguousarray(result.astype(np.float32))
def pre_processing(video_file, sample_id, transform):
X = RandomTemporalSegmentSampler(n_frames=16)(video_file, sample_id=None)
X = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in X]
X = [transform(image=frame)['image'] for frame in X]
X = np.array(X)
X = X.transpose((3, 0, 1, 2))
X = np.expand_dims(X, axis=0)
# X = torch.from_numpy(X).unsqueeze(0).to(device)
return np.ascontiguousarray(X.astype(np.float32))