forked from ocaml/Zarith
-
Notifications
You must be signed in to change notification settings - Fork 3
/
z.ml
534 lines (446 loc) · 16.6 KB
/
z.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
(**
Integers.
This file is part of the Zarith library
http://forge.ocamlcore.org/projects/zarith .
It is distributed under LGPL 2 licensing, with static linking exception.
See the LICENSE file included in the distribution.
Copyright (c) 2010-2011 Antoine Miné, Abstraction project.
Abstraction is part of the LIENS (Laboratoire d'Informatique de l'ENS),
a joint laboratory by:
CNRS (Centre national de la recherche scientifique, France),
ENS (École normale supérieure, Paris, France),
INRIA Rocquencourt (Institut national de recherche en informatique, France).
*)
type t
exception Overflow
external init: unit -> unit = "ml_z_init"
let _ = init ()
let _ = Callback.register_exception "ml_z_overflow" Overflow
external is_small_int: t -> bool = "%obj_is_int"
external unsafe_to_int: t -> int = "%identity"
external of_int: int -> t = "%identity"
external c_neg: t -> t = "ml_z_neg"
let neg x =
if is_small_int x && unsafe_to_int x <> min_int
then of_int (- unsafe_to_int x)
else c_neg x
external c_add: t -> t -> t = "ml_z_add"
let add x y =
if is_small_int x && is_small_int y then begin
let z = unsafe_to_int x + unsafe_to_int y in
(* Overflow check -- Hacker's Delight, section 2.12 *)
if (z lxor unsafe_to_int x) land (z lxor unsafe_to_int y) >= 0
then of_int z
else c_add x y
end else
c_add x y
external c_sub: t -> t -> t = "ml_z_sub"
let sub x y =
if is_small_int x && is_small_int y then begin
let z = unsafe_to_int x - unsafe_to_int y in
(* Overflow check -- Hacker's Delight, section 2.12 *)
if (unsafe_to_int x lxor unsafe_to_int y)
land (z lxor unsafe_to_int x) >= 0
then of_int z
else c_sub x y
end else
c_sub x y
external mul_overflows: int -> int -> bool = "ml_z_mul_overflows" [@@noalloc]
external c_mul: t -> t -> t = "ml_z_mul"
let mul x y =
if is_small_int x && is_small_int y
&& not (mul_overflows (unsafe_to_int x) (unsafe_to_int y))
then of_int (unsafe_to_int x * unsafe_to_int y)
else c_mul x y
external c_div: t -> t -> t = "ml_z_div"
let div x y =
if is_small_int y then
if unsafe_to_int y = -1 then
neg x
else if is_small_int x then
of_int (unsafe_to_int x / unsafe_to_int y)
else
c_div x y
else
c_div x y
external cdiv: t -> t -> t = "ml_z_cdiv"
external fdiv: t -> t -> t = "ml_z_fdiv"
external c_rem: t -> t -> t = "ml_z_rem"
let rem x y =
if is_small_int y then
if unsafe_to_int y = -1 then
of_int 0
else if is_small_int x then
of_int (unsafe_to_int x mod unsafe_to_int y)
else
c_rem x y
else
c_rem x y
external div_rem: t -> t -> (t * t) = "ml_z_div_rem"
external c_divexact: t -> t -> t = "ml_z_divexact"
let divexact x y =
if is_small_int y then
if unsafe_to_int y = -1 then
neg x
else if is_small_int x then
of_int (unsafe_to_int x / unsafe_to_int y)
else
c_divexact x y
else
c_divexact x y
external c_succ: t -> t = "ml_z_succ"
let succ x =
if is_small_int x && unsafe_to_int x <> max_int
then of_int (unsafe_to_int x + 1)
else c_succ x
external c_pred: t -> t = "ml_z_pred"
let pred x =
if is_small_int x && unsafe_to_int x <> min_int
then of_int (unsafe_to_int x - 1)
else c_pred x
external c_abs: t -> t = "ml_z_abs"
let abs x =
if is_small_int x then
if unsafe_to_int x >= 0 then x
else if unsafe_to_int x <> min_int then
of_int (- unsafe_to_int x)
else
c_abs x
else
c_abs x
external c_logand: t -> t -> t = "ml_z_logand"
let logand x y =
if is_small_int x && is_small_int y
then of_int (unsafe_to_int x land unsafe_to_int y)
else c_logand x y
external c_logor: t -> t -> t = "ml_z_logor"
let logor x y =
if is_small_int x && is_small_int y
then of_int (unsafe_to_int x lor unsafe_to_int y)
else c_logor x y
external c_logxor: t -> t -> t = "ml_z_logxor"
let logxor x y =
if is_small_int x && is_small_int y
then of_int (unsafe_to_int x lxor unsafe_to_int y)
else c_logxor x y
external c_lognot: t -> t = "ml_z_lognot"
let lognot x =
if is_small_int x
then of_int (unsafe_to_int x lxor (-1))
else c_lognot x
external c_shift_left: t -> int -> t = "ml_z_shift_left"
let shift_left x y =
if is_small_int x && y >= 0 && y < Sys.word_size then begin
let z = unsafe_to_int x lsl y in
if z asr y = unsafe_to_int x
then of_int z
else c_shift_left x y
end else
c_shift_left x y
external c_shift_right: t -> int -> t = "ml_z_shift_right"
let shift_right x y =
if is_small_int x && y >= 0 then
of_int
(unsafe_to_int x asr (if y < Sys.word_size then y else Sys.word_size - 1))
else
c_shift_right x y
external c_shift_right_trunc: t -> int -> t = "ml_z_shift_right_trunc"
let shift_right_trunc x y =
if is_small_int x && y >= 0 then
if y >= Sys.word_size then
of_int 0
else if unsafe_to_int x >= 0 then
of_int (unsafe_to_int x lsr y)
else
of_int (- ((- unsafe_to_int x) lsr y))
else
c_shift_right_trunc x y
external of_int32: int32 -> t = "ml_z_of_int32"
external of_int64: int64 -> t = "ml_z_of_int64"
external of_nativeint: nativeint -> t = "ml_z_of_nativeint"
external of_float: float -> t = "ml_z_of_float"
let uint32_mask = pred (shift_left (of_int 1) 32)
let of_int32_unsigned x = logand (of_int32 x) uint32_mask
let uint64_mask = pred (shift_left (of_int 1) 64)
let of_int64_unsigned x = logand (of_int64 x) uint64_mask
let uintnat_mask = pred (shift_left (of_int 1) Nativeint.size)
let of_nativeint_unsigned x = logand (of_nativeint x) uintnat_mask
external c_to_int: t -> int = "ml_z_to_int"
let to_int x =
if is_small_int x then unsafe_to_int x else c_to_int x
external to_int32: t -> int32 = "ml_z_to_int32"
external to_int64: t -> int64 = "ml_z_to_int64"
external to_nativeint: t -> nativeint = "ml_z_to_nativeint"
external to_int32_unsigned: t -> int32 = "ml_z_to_int32_unsigned"
external to_int64_unsigned: t -> int64 = "ml_z_to_int64_unsigned"
external to_nativeint_unsigned: t -> nativeint = "ml_z_to_nativeint_unsigned"
external format: string -> t -> string = "ml_z_format"
external of_substring_base: int -> string -> pos:int -> len:int -> t = "ml_z_of_substring_base"
external compare: t -> t -> int = "ml_z_compare" [@@noalloc]
external equal: t -> t -> bool = "ml_z_equal" [@@noalloc]
external sign: t -> int = "ml_z_sign" [@@noalloc]
external gcd: t -> t -> t = "ml_z_gcd"
external gcdext_intern: t -> t -> (t * t * bool) = "ml_z_gcdext_intern"
external sqrt: t -> t = "ml_z_sqrt"
external sqrt_rem: t -> (t * t) = "ml_z_sqrt_rem"
external numbits: t -> int = "ml_z_numbits" [@@noalloc]
external trailing_zeros: t -> int = "ml_z_trailing_zeros" [@@noalloc]
external popcount: t -> int = "ml_z_popcount"
external hamdist: t -> t -> int = "ml_z_hamdist"
external size: t -> int = "ml_z_size" [@@noalloc]
external fits_int: t -> bool = "ml_z_fits_int" [@@noalloc]
external fits_int32: t -> bool = "ml_z_fits_int32" [@@noalloc]
external fits_int64: t -> bool = "ml_z_fits_int64" [@@noalloc]
external fits_nativeint: t -> bool = "ml_z_fits_nativeint" [@@noalloc]
external fits_int32_unsigned: t -> bool = "ml_z_fits_int32_unsigned" [@@noalloc]
external fits_int64_unsigned: t -> bool = "ml_z_fits_int64_unsigned" [@@noalloc]
external fits_nativeint_unsigned: t -> bool = "ml_z_fits_nativeint_unsigned" [@@noalloc]
external extract: t -> int -> int -> t = "ml_z_extract"
external powm: t -> t -> t -> t = "ml_z_powm"
external pow: t -> int -> t = "ml_z_pow"
external powm_sec: t -> t -> t -> t = "ml_z_powm_sec"
external root: t -> int -> t = "ml_z_root"
external rootrem: t -> int -> t * t = "ml_z_rootrem"
external invert: t -> t -> t = "ml_z_invert"
external perfect_power: t -> bool = "ml_z_perfect_power"
external perfect_square: t -> bool = "ml_z_perfect_square"
external probab_prime: t -> int -> int = "ml_z_probab_prime"
external nextprime: t -> t = "ml_z_nextprime"
external hash: t -> int = "ml_z_hash" [@@noalloc]
external to_bits: t -> string = "ml_z_to_bits"
external of_bits: string -> t = "ml_z_of_bits"
external divisible: t -> t -> bool = "ml_z_divisible"
external congruent: t -> t -> t -> bool = "ml_z_congruent"
external jacobi: t -> t -> int = "ml_z_jacobi"
external legendre: t -> t -> int = "ml_z_legendre"
external kronecker: t -> t -> int = "ml_z_kronecker"
external remove: t -> t -> t * int = "ml_z_remove"
external fac: int -> t = "ml_z_fac"
external fac2: int -> t = "ml_z_fac2"
external facM: int -> int -> t = "ml_z_facM"
external primorial: int -> t = "ml_z_primorial"
external bin: t -> int -> t = "ml_z_bin"
external fib: int -> t = "ml_z_fib"
external lucnum: int -> t = "ml_z_lucnum"
let zero = of_int 0
let one = of_int 1
let minus_one = of_int (-1)
let min a b = if compare a b <= 0 then a else b
let max a b = if compare a b >= 0 then a else b
let leq a b = compare a b <= 0
let geq a b = compare a b >= 0
let lt a b = compare a b < 0
let gt a b = compare a b > 0
let to_string = format "%d"
let of_string s = of_substring_base 0 s ~pos:0 ~len:(String.length s)
let of_substring = of_substring_base 0
let of_string_base base s = of_substring_base base s ~pos:0 ~len:(String.length s)
let ediv_rem a b =
(* we have a = q * b + r, but [Big_int]'s remainder satisfies 0 <= r < |b|,
while [Z]'s remainder satisfies -|b| < r < |b| and sign(r) = sign(a)
*)
let q,r = div_rem a b in
if sign r >= 0 then (q,r) else
if sign b >= 0 then (pred q, add r b)
else (succ q, sub r b)
let ediv a b =
if sign b >= 0 then fdiv a b else cdiv a b
let erem a b =
let r = rem a b in
if sign r >= 0 then r else add r (abs b)
let gcdext u v =
match sign u, sign v with
(* special cases: one argument is null *)
| 0, 0 -> zero, zero, zero
| 0, 1 -> v, zero, one
| 0, -1 -> neg v, zero, minus_one
| 1, 0 -> u, one, zero
| -1, 0 -> neg u, minus_one, zero
| _ ->
(* general case *)
let g,s,z = gcdext_intern u v in
if z then g, s, div (sub g (mul u s)) v
else g, div (sub g (mul v s)) u, s
let lcm u v =
if u = zero || v = zero then zero
else
let g = gcd u v in
abs (mul (divexact u g) v)
external testbit_internal: t -> int -> bool = "ml_z_testbit" [@@noalloc]
let testbit x n =
if n >= 0 then testbit_internal x n else invalid_arg "Z.testbit"
(* The test [n >= 0] is done in Caml rather than in the C stub code
so that the latter raises no exceptions and can be declared [@@noalloc]. *)
let is_odd x = testbit_internal x 0
let is_even x = not (testbit_internal x 0)
external c_extract_small: t -> int -> int -> t
= "ml_z_extract_small" [@@noalloc]
external c_extract: t -> int -> int -> t = "ml_z_extract"
let extract_internal x o l =
if is_small_int x then
(* Fast path *)
let o = if o >= Sys.int_size then Sys.int_size - 1 else o in
(* Shift away low "o" bits. If "o" too big, just replicate sign bit. *)
let z = unsafe_to_int x asr o in
if l < Sys.int_size then
(* Extract "l" low bits, if "l" is small enough *)
of_int (z land ((1 lsl l) - 1))
else if z >= 0 then
(* If x >= 0, the extraction of "l" low bits keeps x unchanged. *)
of_int z
else
(* If x < 0, fall through slow path *)
c_extract x o l
else if l < Sys.int_size then
(* Alternative fast path since no allocation is required *)
c_extract_small x o l
else
c_extract x o l
let extract x o l =
if o < 0 then invalid_arg "Z.extract: negative bit offset";
if l < 1 then invalid_arg "Z.extract: nonpositive bit length";
extract_internal x o l
let signed_extract x o l =
if o < 0 then invalid_arg "Z.signed_extract: negative bit offset";
if l < 1 then invalid_arg "Z.signed_extract: nonpositive bit length";
if testbit x (o + l - 1)
then lognot (extract (lognot x) o l)
else extract x o l
let log2 x =
if sign x > 0 then (numbits x) - 1 else invalid_arg "Z.log2"
let log2up x =
if sign x > 0 then numbits (pred x) else invalid_arg "Z.log2up"
(* Consider a real number [r] such that
- the integral part of [r] is the bigint [x]
- 2^54 <= |x| < 2^63
- the fractional part of [r] is 0 if [exact = true],
nonzero if [exact = false].
Then, the following function returns [r] correctly rounded
according to the current rounding mode of the processor.
This is an instance of the "round to odd" technique formalized in
"When double rounding is odd" by S. Boldo and G. Melquiond.
The claim above is lemma Fappli_IEEE_extra.round_odd_fix
from the CompCert Coq development. *)
let round_to_float x exact =
let m = to_int64 x in
(* Unless the fractional part is exactly 0, round m to an odd integer *)
let m = if exact then m else Int64.logor m 1L in
(* Then convert m to float, with the current rounding mode. *)
Int64.to_float m
let to_float x =
if Obj.is_int (Obj.repr x) then
(* Fast path *)
float_of_int (Obj.magic x : int)
else begin
let n = numbits x in
if n <= 63 then
Int64.to_float (to_int64 x)
else begin
let n = n - 55 in
(* Extract top 55 bits of x *)
let top = shift_right x n in
(* Check if the other bits are all zero *)
let exact = equal x (shift_left top n) in
(* Round to float and apply exponent *)
ldexp (round_to_float top exact) n
end
end
(* Formatting *)
let print x = print_string (to_string x)
let output chan x = output_string chan (to_string x)
let sprint () x = to_string x
let bprint b x = Buffer.add_string b (to_string x)
let pp_print f x = Format.pp_print_string f (to_string x)
(* Pseudo-random generation *)
let rec raw_bits_random ?(rng: Random.State.t option) nbits =
let rec raw_bits accu n =
if n >= nbits then (accu, n) else begin
let i =
match rng with
| None -> Random.bits ()
| Some r -> Random.State.bits r in
raw_bits (logxor (shift_left accu 30) (of_int i)) (n + 30)
end in
raw_bits zero 0
let raw_bits_from_bytes ~(fill: bytes -> int -> int -> unit) nbits =
let nbytes = (nbits + 7) / 8 in
let buf = Bytes.create nbytes in
fill buf 0 nbytes;
(of_bits (Bytes.to_string buf), nbytes * 8)
let random_bits_aux (f: int -> t * int) nbits =
if nbits < 0 then invalid_arg "random_bits: number of bits must be >= 0";
let (x, _) = f nbits in
extract x 0 nbits
let random_int_aux (f: int -> t * int) bound =
if sign bound <= 0 then invalid_arg "random_int: bound must be > 0";
let nbits1 = log2up bound in
let rec draw () =
(* The minimal number of random bits we need to draw is nbits1.
However, in the worst case, rejection (as described below)
will occur with probability almost 1/2. So, we draw more bits
than strictly necessary to make rejection much less likely.
With 4 extra bits, the probability of rejection is less than
1/32. *)
let (x, nbits) = f (nbits1 + 4) in
let y = rem x bound in
(* We divide the range of x, namely [0 .. 2^nbits), into
- k intervals of width bound :
[0 .. bound) [bound.. 2*bound) .. [(k-1) * bound.. k * bound)
- the remaining numbers: [k * bound .. 2^nbits)
k is chosen as large as possible: k = floor (2^nbits / bound).
If x falls within the k intervals of width bound,
y = x mod bound is evenly distributed in [0 .. bound)
and we can use it as the pseudo-random number.
If x falls within the [k * bound .. 2^nbits) interval,
y = x mod bound may not be evenly distributed;
we reject and draw again.
We can decide efficiently whether to reject, as follows.
Write 2^nbits = k * bound + r and x = q * bound + y,
with r and y in [0 .. bound).
If x - y <= 2^nbits - bound, then
q * bound = x - y <= 2^nbits - bound < 2^nbits - r = k * bound,
hence q < k and we can accept x.
Otherwise,
q * bound = x - y > 2^nbits - bound = (k - 1) * bound + r
hence q >= k and we must reject x.
*)
if leq (sub x y) (sub (shift_left one nbits) bound)
then y
else draw () in
draw ()
let random_int ?rng bound =
random_int_aux (raw_bits_random ?rng) bound
let random_bits ?rng nbits =
random_bits_aux (raw_bits_random ?rng) nbits
let random_int_gen ~fill bound =
random_int_aux (raw_bits_from_bytes ~fill) bound
let random_bits_gen ~fill nbits =
random_bits_aux (raw_bits_from_bytes ~fill) nbits
(* Infix notations *)
let (~-) = neg
let (~+) x = x
let (+) = add
let (-) = sub
let ( * ) = mul
let (/) = div
external (/>): t -> t -> t = "ml_z_cdiv"
external (/<): t -> t -> t = "ml_z_fdiv"
let (/|) = divexact
let (mod) = rem
let (land) = logand
let (lor) = logor
let (lxor) = logxor
let (~!) = lognot
let (lsl) = shift_left
let (asr) = shift_right
external (~$): int -> t = "%identity"
external ( ** ): t -> int -> t = "ml_z_pow"
module Compare = struct
let (=) = equal
let (<) = lt
let (>) = gt
let (<=) = leq
let (>=) = geq
let (<>) a b = not (equal a b)
end
let version = Zarith_version.version