-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathrun.py
246 lines (220 loc) · 11.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
import pandas as pd
import numpy as np
import tqdm
from tensorflow import keras
from models import MFBasedModel, GMFBasedModel, DNNBasedModel
class Run():
def __init__(self,
config
):
self.use_cuda = config['use_cuda']
self.base_model = config['base_model']
self.root = config['root']
self.ratio = config['ratio']
self.task = config['task']
self.src = config['src_tgt_pairs'][self.task]['src']
self.tgt = config['src_tgt_pairs'][self.task]['tgt']
self.uid_all = config['src_tgt_pairs'][self.task]['uid']
self.iid_all = config['src_tgt_pairs'][self.task]['iid']
self.batchsize_src = config['src_tgt_pairs'][self.task]['batchsize_src']
self.batchsize_tgt = config['src_tgt_pairs'][self.task]['batchsize_tgt']
self.batchsize_meta = config['src_tgt_pairs'][self.task]['batchsize_meta']
self.batchsize_map = config['src_tgt_pairs'][self.task]['batchsize_map']
self.batchsize_test = config['src_tgt_pairs'][self.task]['batchsize_test']
self.batchsize_aug = self.batchsize_src
self.epoch = config['epoch']
self.emb_dim = config['emb_dim']
self.meta_dim = config['meta_dim']
self.num_fields = config['num_fields']
self.lr = config['lr']
self.wd = config['wd']
self.input_root = self.root + 'ready/_' + str(int(self.ratio[0] * 10)) + '_' + str(int(self.ratio[1] * 10)) + \
'/tgt_' + self.tgt + '_src_' + self.src
self.src_path = self.input_root + '/train_src.csv'
self.tgt_path = self.input_root + '/train_tgt.csv'
self.meta_path = self.input_root + '/train_meta.csv'
self.test_path = self.input_root + '/test.csv'
self.results = {'tgt_mae': 10, 'tgt_rmse': 10,
'aug_mae': 10, 'aug_rmse': 10,
'emcdr_mae': 10, 'emcdr_rmse': 10,
'ptupcdr_mae': 10, 'ptupcdr_rmse': 10}
def seq_extractor(self, x):
x = x.rstrip(']').lstrip('[').split(', ')
for i in range(len(x)):
try:
x[i] = int(x[i])
except:
x[i] = self.iid_all
return np.array(x)
def read_log_data(self, path, batchsize, history=False):
if not history:
cols = ['uid', 'iid', 'y']
x_col = ['uid', 'iid']
y_col = ['y']
data = pd.read_csv(path, header=None)
data.columns = cols
X = torch.tensor(data[x_col].values, dtype=torch.long)
y = torch.tensor(data[y_col].values, dtype=torch.long)
if self.use_cuda:
X = X.cuda()
y = y.cuda()
dataset = TensorDataset(X, y)
data_iter = DataLoader(dataset, batchsize, shuffle=True)
return data_iter
else:
data = pd.read_csv(path, header=None)
cols = ['uid', 'iid', 'y', 'pos_seq']
x_col = ['uid', 'iid']
y_col = ['y']
data.columns = cols
pos_seq = keras.preprocessing.sequence.pad_sequences(data.pos_seq.map(self.seq_extractor), maxlen=20, padding='post')
pos_seq = torch.tensor(pos_seq, dtype=torch.long)
id_fea = torch.tensor(data[x_col].values, dtype=torch.long)
X = torch.cat([id_fea, pos_seq], dim=1)
y = torch.tensor(data[y_col].values, dtype=torch.long)
if self.use_cuda:
X = X.cuda()
y = y.cuda()
dataset = TensorDataset(X, y)
data_iter = DataLoader(dataset, batchsize, shuffle=True)
return data_iter
def read_map_data(self):
cols = ['uid', 'iid', 'y', 'pos_seq']
data = pd.read_csv(self.meta_path, header=None)
data.columns = cols
X = torch.tensor(data['uid'].unique(), dtype=torch.long)
y = torch.tensor(np.array(range(X.shape[0])), dtype=torch.long)
if self.use_cuda:
X = X.cuda()
y = y.cuda()
dataset = TensorDataset(X, y)
data_iter = DataLoader(dataset, self.batchsize_map, shuffle=True)
return data_iter
def read_aug_data(self):
cols_train = ['uid', 'iid', 'y']
x_col = ['uid', 'iid']
y_col = ['y']
src = pd.read_csv(self.src_path, header=None)
src.columns = cols_train
tgt = pd.read_csv(self.tgt_path, header=None)
tgt.columns = cols_train
X_src = torch.tensor(src[x_col].values, dtype=torch.long)
y_src = torch.tensor(src[y_col].values, dtype=torch.long)
X_tgt = torch.tensor(tgt[x_col].values, dtype=torch.long)
y_tgt = torch.tensor(tgt[y_col].values, dtype=torch.long)
X = torch.cat([X_src, X_tgt])
y = torch.cat([y_src, y_tgt])
if self.use_cuda:
X = X.cuda()
y = y.cuda()
dataset = TensorDataset(X, y)
data_iter = DataLoader(dataset, self.batchsize_aug, shuffle=True)
return data_iter
def get_data(self):
print('========Reading data========')
data_src = self.read_log_data(self.src_path, self.batchsize_src)
print('src {} iter / batchsize = {} '.format(len(data_src), self.batchsize_src))
data_tgt = self.read_log_data(self.tgt_path, self.batchsize_tgt)
print('tgt {} iter / batchsize = {} '.format(len(data_tgt), self.batchsize_tgt))
data_meta = self.read_log_data(self.meta_path, self.batchsize_meta, history=True)
print('meta {} iter / batchsize = {} '.format(len(data_meta), self.batchsize_meta))
data_map = self.read_map_data()
print('map {} iter / batchsize = {} '.format(len(data_map), self.batchsize_map))
data_aug = self.read_aug_data()
print('aug {} iter / batchsize = {} '.format(len(data_aug), self.batchsize_aug))
data_test = self.read_log_data(self.test_path, self.batchsize_test, history=True)
print('test {} iter / batchsize = {} '.format(len(data_test), self.batchsize_test))
return data_src, data_tgt, data_meta, data_map, data_aug, data_test
def get_model(self):
if self.base_model == 'MF':
model = MFBasedModel(self.uid_all, self.iid_all, self.num_fields, self.emb_dim, self.meta_dim)
elif self.base_model == 'DNN':
model = DNNBasedModel(self.uid_all, self.iid_all, self.num_fields, self.emb_dim, self.meta_dim)
elif self.base_model == 'GMF':
model = GMFBasedModel(self.uid_all, self.iid_all, self.num_fields, self.emb_dim, self.meta_dim)
else:
raise ValueError('Unknown base model: ' + self.base_model)
return model.cuda() if self.use_cuda else model
def get_optimizer(self, model):
optimizer_src = torch.optim.Adam(params=model.src_model.parameters(), lr=self.lr, weight_decay=self.wd)
optimizer_tgt = torch.optim.Adam(params=model.tgt_model.parameters(), lr=self.lr, weight_decay=self.wd)
optimizer_meta = torch.optim.Adam(params=model.meta_net.parameters(), lr=self.lr, weight_decay=self.wd)
optimizer_aug = torch.optim.Adam(params=model.aug_model.parameters(), lr=self.lr, weight_decay=self.wd)
optimizer_map = torch.optim.Adam(params=model.mapping.parameters(), lr=self.lr, weight_decay=self.wd)
return optimizer_src, optimizer_tgt, optimizer_meta, optimizer_aug, optimizer_map
def eval_mae(self, model, data_loader, stage):
print('Evaluating MAE:')
model.eval()
targets, predicts = list(), list()
loss = torch.nn.L1Loss()
mse_loss = torch.nn.MSELoss()
with torch.no_grad():
for X, y in tqdm.tqdm(data_loader, smoothing=0, mininterval=1.0):
pred = model(X, stage)
targets.extend(y.squeeze(1).tolist())
predicts.extend(pred.tolist())
targets = torch.tensor(targets).float()
predicts = torch.tensor(predicts)
return loss(targets, predicts).item(), torch.sqrt(mse_loss(targets, predicts)).item()
def train(self, data_loader, model, criterion, optimizer, epoch, stage, mapping=False):
print('Training Epoch {}:'.format(epoch + 1))
model.train()
for X, y in tqdm.tqdm(data_loader, smoothing=0, mininterval=1.0):
if mapping:
src_emb, tgt_emb = model(X, stage)
loss = criterion(src_emb, tgt_emb)
else:
pred = model(X, stage)
loss = criterion(pred, y.squeeze().float())
model.zero_grad()
loss.backward()
optimizer.step()
def update_results(self, mae, rmse, phase):
if mae < self.results[phase + '_mae']:
self.results[phase + '_mae'] = mae
if rmse < self.results[phase + '_rmse']:
self.results[phase + '_rmse'] = rmse
def TgtOnly(self, model, data_tgt, data_test, criterion, optimizer):
print('=========TgtOnly========')
for i in range(self.epoch):
self.train(data_tgt, model, criterion, optimizer, i, stage='train_tgt')
mae, rmse = self.eval_mae(model, data_test, stage='test_tgt')
self.update_results(mae, rmse, 'tgt')
print('MAE: {} RMSE: {}'.format(mae, rmse))
def DataAug(self, model, data_aug, data_test, criterion, optimizer):
print('=========DataAug========')
for i in range(self.epoch):
self.train(data_aug, model, criterion, optimizer, i, stage='train_aug')
mae, rmse = self.eval_mae(model, data_test, stage='test_aug')
self.update_results(mae, rmse, 'aug')
print('MAE: {} RMSE: {}'.format(mae, rmse))
def CDR(self, model, data_src, data_map, data_meta, data_test,
criterion, optimizer_src, optimizer_map, optimizer_meta):
print('=====CDR Pretraining=====')
for i in range(self.epoch):
self.train(data_src, model, criterion, optimizer_src, i, stage='train_src')
print('==========EMCDR==========')
for i in range(self.epoch):
self.train(data_map, model, criterion, optimizer_map, i, stage='train_map', mapping=True)
mae, rmse = self.eval_mae(model, data_test, stage='test_map')
self.update_results(mae, rmse, 'emcdr')
print('MAE: {} RMSE: {}'.format(mae, rmse))
print('==========PTUPCDR==========')
for i in range(self.epoch):
self.train(data_meta, model, criterion, optimizer_meta, i, stage='train_meta')
mae, rmse = self.eval_mae(model, data_test, stage='test_meta')
self.update_results(mae, rmse, 'ptupcdr')
print('MAE: {} RMSE: {}'.format(mae, rmse))
def main(self):
model = self.get_model()
data_src, data_tgt, data_meta, data_map, data_aug, data_test = self.get_data()
optimizer_src, optimizer_tgt, optimizer_meta, optimizer_aug, optimizer_map = self.get_optimizer(model)
criterion = torch.nn.MSELoss()
self.TgtOnly(model, data_tgt, data_test, criterion, optimizer_tgt)
self.DataAug(model, data_aug, data_test, criterion, optimizer_aug)
self.CDR(model, data_src, data_map, data_meta, data_test,
criterion, optimizer_src, optimizer_map, optimizer_meta)
print(self.results)