-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfruit_recognition_train2.py
executable file
·42 lines (30 loc) · 1.45 KB
/
fruit_recognition_train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from __future__ import division, print_function, absolute_import
import tflearn
import fruit_recognition_model
from tflearn.data_utils import build_hdf5_image_dataset
import h5py
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
root_directory = '/home/emooo/PycharmProjects/machine_learning/'
image_directory = root_directory + 'dataset/train/'
dataset_file = root_directory + 'trained_data/train_dataset.h5'
imageWidth = 80
imageHeight = 80
numClasses = 2
print("Fruit Recognition. Emil Kalchev 2016")
print("Data set file: ",dataset_file)
print("Image directory: ",image_directory)
build_hdf5_image_dataset(image_directory, image_shape=(imageWidth, imageHeight), mode='folder', output_path=dataset_file, categorical_labels=True, normalize=True)
h5f = h5py.File(dataset_file, 'r')
X = h5f['X']
Y = h5f['Y']
network = fruit_recognition_model.getEkalchevNet(imageWidth, imageHeight, numClasses)
# Training
model = tflearn.DNN(network, checkpoint_path='fruit_recognition',
max_checkpoints=1, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=1000, validation_set=0.2, shuffle=True,
show_metric=True, batch_size=64, snapshot_step=50,
snapshot_epoch=False, run_id='fruit_recognition_convnet')
model.save(root_directory + "fruit_recognition_model.tfl")