forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.yml
59 lines (53 loc) · 1.82 KB
/
pipeline.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
$schema: https://azuremlschemas.azureedge.net/latest/pipelineJob.schema.json
type: pipeline
description: Pipeline using AutoML Image Instance Segmentation task
display_name: pipeline-with-image-instance-segmentation
experiment_name: pipeline-with-automl
settings:
default_compute: azureml:gpu-cluster
inputs:
image_instance_segmentation_training_data:
type: mltable
path: data/training-mltable-folder
image_instance_segmentation_validation_data:
type: mltable
path: data/validation-mltable-folder
jobs:
image_instance_segmentation_node:
type: automl
task: image_instance_segmentation
log_verbosity: info
primary_metric: mean_average_precision
limits:
timeout_minutes: 180
target_column_name: label
training_data: ${{parent.inputs.image_instance_segmentation_training_data}}
validation_data: ${{parent.inputs.image_instance_segmentation_validation_data}}
image_model:
early_stopping: True
evaluation_frequency: 1
sweep:
limits:
max_trials: 10
max_concurrent_trials: 2
sampling_algorithm: random
early_termination:
type: bandit
evaluation_interval: 2
slack_factor: 0.2
delay_evaluation: 6
search_space:
- model_name: "maskrcnn_resnet50_fpn"
learning_rate: "uniform(0.0001, 0.001)"
optimizer: "choice('sgd', 'adam', 'adamw')"
min_size: "choice(600, 800)"
# currently need to specify outputs "mlflow_model" explicitly to reference it in following nodes
outputs:
best_model:
type: mlflow_model
register_model_node:
type: command
component: file:./components/component_register_model.yaml
inputs:
model_input_path: ${{parent.jobs.image_instance_segmentation_node.outputs.best_model}}
model_base_name: fridge_items_segmentation_model