-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathrag_methods.py
181 lines (141 loc) · 6.85 KB
/
rag_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import dotenv
from time import time
import streamlit as st
from langchain_community.document_loaders.text import TextLoader
from langchain_community.document_loaders import (
WebBaseLoader,
PyPDFLoader,
Docx2txtLoader,
)
# pip install docx2txt, pypdf
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings, AzureOpenAIEmbeddings
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
dotenv.load_dotenv()
os.environ["USER_AGENT"] = "myagent"
DB_DOCS_LIMIT = 10
# Function to stream the response of the LLM
def stream_llm_response(llm_stream, messages):
response_message = ""
for chunk in llm_stream.stream(messages):
response_message += chunk.content
yield chunk
st.session_state.messages.append({"role": "assistant", "content": response_message})
# --- Indexing Phase ---
def load_doc_to_db():
# Use loader according to doc type
if "rag_docs" in st.session_state and st.session_state.rag_docs:
docs = []
for doc_file in st.session_state.rag_docs:
if doc_file.name not in st.session_state.rag_sources:
if len(st.session_state.rag_sources) < DB_DOCS_LIMIT:
os.makedirs("source_files", exist_ok=True)
file_path = f"./source_files/{doc_file.name}"
with open(file_path, "wb") as file:
file.write(doc_file.read())
try:
if doc_file.type == "application/pdf":
loader = PyPDFLoader(file_path)
elif doc_file.name.endswith(".docx"):
loader = Docx2txtLoader(file_path)
elif doc_file.type in ["text/plain", "text/markdown"]:
loader = TextLoader(file_path)
else:
st.warning(f"Document type {doc_file.type} not supported.")
continue
docs.extend(loader.load())
st.session_state.rag_sources.append(doc_file.name)
except Exception as e:
st.toast(f"Error loading document {doc_file.name}: {e}", icon="⚠️")
print(f"Error loading document {doc_file.name}: {e}")
finally:
os.remove(file_path)
else:
st.error(F"Maximum number of documents reached ({DB_DOCS_LIMIT}).")
if docs:
_split_and_load_docs(docs)
st.toast(f"Document *{str([doc_file.name for doc_file in st.session_state.rag_docs])[1:-1]}* loaded successfully.", icon="✅")
def load_url_to_db():
if "rag_url" in st.session_state and st.session_state.rag_url:
url = st.session_state.rag_url
docs = []
if url not in st.session_state.rag_sources:
if len(st.session_state.rag_sources) < 10:
try:
loader = WebBaseLoader(url)
docs.extend(loader.load())
st.session_state.rag_sources.append(url)
except Exception as e:
st.error(f"Error loading document from {url}: {e}")
if docs:
_split_and_load_docs(docs)
st.toast(f"Document from URL *{url}* loaded successfully.", icon="✅")
else:
st.error("Maximum number of documents reached (10).")
def initialize_vector_db(docs):
if "AZ_OPENAI_API_KEY" not in os.environ:
embedding = OpenAIEmbeddings(api_key=st.session_state.openai_api_key)
else:
embedding = AzureOpenAIEmbeddings(
api_key=os.getenv("AZ_OPENAI_API_KEY"),
azure_endpoint=os.getenv("AZ_OPENAI_ENDPOINT"),
model="text-embedding-3-large",
openai_api_version="2024-02-15-preview",
)
vector_db = Chroma.from_documents(
documents=docs,
embedding=embedding,
collection_name=f"{str(time()).replace('.', '')[:14]}_" + st.session_state['session_id'],
)
# We need to manage the number of collections that we have in memory, we will keep the last 20
chroma_client = vector_db._client
collection_names = sorted([collection.name for collection in chroma_client.list_collections()])
print("Number of collections:", len(collection_names))
while len(collection_names) > 20:
chroma_client.delete_collection(collection_names[0])
collection_names.pop(0)
return vector_db
def _split_and_load_docs(docs):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=5000,
chunk_overlap=1000,
)
document_chunks = text_splitter.split_documents(docs)
if "vector_db" not in st.session_state:
st.session_state.vector_db = initialize_vector_db(docs)
else:
st.session_state.vector_db.add_documents(document_chunks)
# --- Retrieval Augmented Generation (RAG) Phase ---
def _get_context_retriever_chain(vector_db, llm):
retriever = vector_db.as_retriever()
prompt = ChatPromptTemplate.from_messages([
MessagesPlaceholder(variable_name="messages"),
("user", "{input}"),
("user", "Given the above conversation, generate a search query to look up in order to get inforamtion relevant to the conversation, focusing on the most recent messages."),
])
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
return retriever_chain
def get_conversational_rag_chain(llm):
retriever_chain = _get_context_retriever_chain(st.session_state.vector_db, llm)
prompt = ChatPromptTemplate.from_messages([
("system",
"""You are a helpful assistant. You will have to answer to user's queries.
You will have some context to help with your answers, but now always would be completely related or helpful.
You can also use your knowledge to assist answering the user's queries.\n
{context}"""),
MessagesPlaceholder(variable_name="messages"),
("user", "{input}"),
])
stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
return create_retrieval_chain(retriever_chain, stuff_documents_chain)
def stream_llm_rag_response(llm_stream, messages):
conversation_rag_chain = get_conversational_rag_chain(llm_stream)
response_message = "*(RAG Response)*\n"
for chunk in conversation_rag_chain.pick("answer").stream({"messages": messages[:-1], "input": messages[-1].content}):
response_message += chunk
yield chunk
st.session_state.messages.append({"role": "assistant", "content": response_message})