Skip to content

Latest commit

 

History

History
34 lines (26 loc) · 2.43 KB

Edge_Aug.md

File metadata and controls

34 lines (26 loc) · 2.43 KB

Edge Augmentation (Edge Aug)

We use edge detection as augmentation (i.e., Edge Aug) to furthur improve the performance of mitigating the color and texture shortcuts on ImageNet-Sketch.

Use Edge Aug on ImageNet

We use DexiNed for edge detection on ImageNet. To generate the edge augmenated ImageNet, first download the checkpoint of DexiNed to exp/weights/dexined.pth. Then, run the following command:

python create_datasets/imagenet/edge_aug/gen_edge_aug.py

It will generate the Edge Aug data to data/imagenet_edge with the following directory tree structure:

data/imagenet_edge/train
├── n01440764
├── n01443537
├── ...

Training LLE + Edge Aug

PYTHONPATH=.:$PYTHONPATH python imagenet_trainers/launcher.py --method ${METHOD} --amp --feature_extractor resnet50_erm --lr ${LR} [--wandb] [--slurm_partition ${SLURM_PARTITION}] [--slurm_job_name ${METHOD}_imagenet] --edge_aug

Here are the results and the checkpoints of LLE using Edge Aug:

method architecture IN-1k IN-W Gap Carton Gap SIN Gap IN-R Gap IN-9 Gap IN-Sketch Gap LR checkpoint
LLE + Edge Aug ResNet-50 76.24 -6.18 +10 -61.52 -53.69 -3.95 -48.25 1e-3 model
MAE + LLE + Edge Aug ViT-B 83.69 -2.54 +6 -59.04 -43.97 -3.70 -43.17 1e-3 model
MAE + LLE + Edge Aug ViT-L 85.84 -1.76 +16 -56.52 -33.76 -2.94 -36.45 1e-3 model
MAE + LLE + Edge Aug ViT-H 86.84 -1.20 +28 -55.90 -30.31 -2.47 -33.45 1e-3 model
SWAG + LLE + Edge Aug ViT-B 85.31 -2.48 +12 -61.24 -27.78 -3.28 -38.37 1e-4 model