-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_quadcopter.py
119 lines (92 loc) · 3.43 KB
/
model_quadcopter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import pandas as pd
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
# Load the data from the CSV
data_yaw = pd.read_csv('crazyflie_dataset/yaw.csv')
#select only first 10000 entries
data_yaw = data_yaw.iloc[800:1400]
time_yaw = data_yaw['timeTick'].values * 1e-3
data_thrust = pd.read_csv('crazyflie_dataset/thrust.csv')
#select only first 10000 entries
data_thrust = data_thrust.iloc[300:1000]
time_thrust = data_thrust['timeTick'].values * 1e-3
data = pd.read_csv('crazyflie_dataset/rollandpitch.csv')
#select only first 10000 entries
data = data.iloc[1400:2000]
time = data['timeTick'].values * 1e-3
dt = time_yaw[1] - time_yaw[0]
#make time start at 0
input_signal = data_thrust[' desThrustCmd'].values
output_signal = data_thrust[' desAccelZ'].values
input_signal_roll = data[' desRollRate'].values
output_signal_roll = data[' gyrox'].values
input_signal_pitch = data[' desPitchRate'].values
output_signal_pitch = -data[' gyroy'].values
input_signal_yaw = data_yaw[' desYawRate'].values
output_signal_yaw = data_yaw[' gyroz'].values
# yk+1 = yk + ((k * input_signal - yk)/tau) * dt
# dymdt = (k * input_signal - y)/tau)
# y0 = 0
def firstorderdelay(input_signal, k, tau):
model_signal = np.zeros(len(input_signal))
model_signal[0] = 0
for i in range(1, len(input_signal)):
model_signal[i] = model_signal[i-1] + ((k * input_signal[i-1] - model_signal[i-1])/tau)*dt
return model_signal
def firstoderdelaynoscale(input_signal, tau):
return firstorderdelay(input_signal, 1, tau)
# Curve fitting to estimate dydt
#popt, _ = curve_fit(firstorderdelay, input_signal, output_signal)
# K_estimated, tau_estimated = popt
# print("Estimated K:", K_estimated)
# print("Estimated time constant tau:", tau_estimated)
taup = 0.038205684394448125
tauq = 0.036791804
taur = 1.1111354055
tauT = 0.05654755
K_estimated = 2.0392824564266964e-05
plt.figure(figsize=(6, 8))
plt.subplot(4, 1, 1)
plt.title("System Identification of the Crazyflie")
plt.plot(time_thrust, input_signal*K_estimated, color = "#00A6D6", label='Input')
plt.plot(time_thrust, output_signal, color = 'r', label='Output')
#modelled signal
plt.plot(time_thrust, firstorderdelay(input_signal,K_estimated, tauT), color = 'g',label='Model')
#label axis
plt.xlabel('Time [s]')
plt.ylabel('Thrust [Gs]')
plt.grid()
plt.legend()
plt.subplot(4, 1, 2)
plt.plot(time, input_signal_roll, color = "#00A6D6", label='Input')
plt.plot(time, output_signal_roll, color = 'r', label='Output')
#modelled signal
plt.plot(time, firstorderdelay(input_signal_roll,1, taup), color = 'g',label='Model')
#label axis
plt.ylim(-250, 250)
plt.xlabel('Time [s]')
plt.ylabel('Roll [deg/s]')
plt.grid()
plt.subplot(4, 1, 3)
plt.plot(time, input_signal_pitch, color = "#00A6D6", label='Input')
plt.plot(time, output_signal_pitch, color = 'r', label='Output')
#modelled signal
plt.plot(time, firstorderdelay(input_signal_pitch,1, tauq), color = 'g',label='Model')
#label axis
plt.ylim(-200, 200)
plt.xlabel('Time [s]')
plt.ylabel('Pitch [deg/s]')
plt.grid()
plt.subplot(4, 1, 4)
plt.plot(time_yaw, input_signal_yaw, color = "#00A6D6", label='Input')
plt.plot(time_yaw, output_signal_yaw, color = 'r', label='Output')
#modelled signal
plt.plot(time_yaw, firstorderdelay(input_signal_yaw,1, taur), color = 'g',label='Model')
#label axis
plt.xlabel('Time [s]')
plt.ylabel('Yaw [deg/s]')
plt.grid()
#
plt.savefig('system_identification.svg', format= 'svg', dpi=300, bbox_inches='tight')
plt.show()