-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
197 lines (166 loc) · 7.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# SPDX-License-Identifier: Apache-2.0
import os
from typing import List, Tuple
import onnx.checker
import onnx.helper
import onnx.shape_inference
from onnx import ModelProto, NodeProto, TensorProto, ValueInfoProto, FunctionProto
class Extractor:
def __init__(self, model: ModelProto) -> None:
self.model = onnx.shape_inference.infer_shapes(model)
self.graph = self.model.graph
self.wmap = self._build_name2obj_dict(self.graph.initializer)
self.vimap = self._build_name2obj_dict(self.graph.value_info)
@staticmethod
def _build_name2obj_dict(objs): # type: ignore
return {obj.name: obj for obj in objs}
def _collect_new_io_core(self, original_io, io_names_to_extract): # type: ignore
original_io_map = self._build_name2obj_dict(original_io)
original_io_names = set(original_io_map.keys())
s_io_names_to_extract = set(io_names_to_extract)
io_names_to_keep = s_io_names_to_extract & original_io_names
new_io_names_to_add = s_io_names_to_extract - original_io_names
new_io_tensors = []
for name in io_names_to_keep:
new_io_tensors.append(original_io_map[name])
for name in new_io_names_to_add:
# activation become input or output
new_io_tensors.append(self.vimap[name])
# adjust sequence
new_io_tensors_map = self._build_name2obj_dict(new_io_tensors)
return [new_io_tensors_map[name] for name in io_names_to_extract]
def _collect_new_inputs(self, names: List[str]) -> List[ValueInfoProto]:
return self._collect_new_io_core(self.graph.input, names) # type: ignore
def _collect_new_outputs(self, names: List[str]) -> List[ValueInfoProto]:
return self._collect_new_io_core(self.graph.output, names) # type: ignore
def _dfs_search_reachable_nodes(
self,
node_output_name: str,
graph_input_names: List[str],
reachable_nodes: List[NodeProto],
) -> None:
if node_output_name in graph_input_names:
return
for node in self.graph.node:
# check output_name first to reduce run time
if node_output_name not in node.output:
continue
if node in reachable_nodes:
continue
reachable_nodes.append(node)
for name in node.input:
self._dfs_search_reachable_nodes(name, graph_input_names, reachable_nodes)
def _collect_reachable_nodes(
self,
input_names: List[str],
output_names: List[str],
) -> List[NodeProto]:
reachable_nodes = list() # type: ignore
for name in output_names:
self._dfs_search_reachable_nodes(name, input_names, reachable_nodes)
# needs to be topology sorted.
nodes = [n for n in self.graph.node if n in reachable_nodes]
return nodes
def _collect_referred_local_functions(
self,
nodes, # type: List[NodeProto]
): # type: (...) -> List[FunctionProto]
# a node in a model graph may refer a function.
# a function contains nodes, some of which may in turn refer a function.
# we need to find functions referred by graph nodes and
# by nodes used to define functions.
def find_referred_funcs(nodes, referred_local_functions): # type: ignore
new_nodes = [] # type: List[NodeProto]
for node in nodes:
# check if the node is a function op
match_function = next((
f for f in self.model.functions
if f.name == node.op_type and f.domain == node.domain),
None)
if match_function and match_function not in referred_local_functions:
referred_local_functions.append(match_function)
new_nodes.extend(match_function.node)
return new_nodes
referred_local_functions = [] # type: List[FunctionProto]
new_nodes = find_referred_funcs(nodes, referred_local_functions)
while new_nodes:
new_nodes = find_referred_funcs(new_nodes, referred_local_functions)
return referred_local_functions
def _collect_reachable_tensors(
self,
nodes: List[NodeProto],
) -> Tuple[List[TensorProto], List[ValueInfoProto]]:
all_tensors_name = set()
for node in nodes:
for name in node.input:
all_tensors_name.add(name)
for name in node.output:
all_tensors_name.add(name)
initializer = [self.wmap[t] for t in self.wmap.keys() if t in all_tensors_name]
value_info = [self.vimap[t] for t in self.vimap.keys() if t in all_tensors_name]
assert len(self.graph.sparse_initializer) == 0
assert len(self.graph.quantization_annotation) == 0
return initializer, value_info
def _make_model(
self,
nodes: List[NodeProto],
inputs: List[ValueInfoProto],
outputs: List[ValueInfoProto],
initializer: List[TensorProto],
value_info: List[ValueInfoProto],
local_functions: List[FunctionProto],
) -> ModelProto:
name = 'Extracted from {' + self.graph.name + '}'
graph = onnx.helper.make_graph(nodes, name, inputs, outputs, initializer=initializer,
value_info=value_info)
meta = {
'ir_version': self.model.ir_version,
'opset_imports': self.model.opset_import,
'producer_name': 'onnx.utils.extract_model',
'functions': local_functions,
}
return onnx.helper.make_model(graph, **meta)
def extract_model(
self,
input_names: List[str],
output_names: List[str],
) -> ModelProto:
inputs = self._collect_new_inputs(input_names)
outputs = self._collect_new_outputs(output_names)
nodes = self._collect_reachable_nodes(input_names, output_names)
initializer, value_info = self._collect_reachable_tensors(nodes)
local_functions = self._collect_referred_local_functions(nodes)
model = self._make_model(nodes, inputs, outputs, initializer, value_info, local_functions)
return model
def extract_model(
input_path: str,
output_path: str,
input_names: List[str],
output_names: List[str],
check_model: bool = True,
) -> None:
"""Extracts sub-model from an ONNX model.
The sub-model is defined by the names of the input and output tensors *exactly*.
Note: For control-flow operators, e.g. If and Loop, the _boundary of sub-model_,
which is defined by the input and output tensors, should not _cut through_ the
subgraph that is connected to the _main graph_ as attributes of these operators.
Arguments:
input_path (string): The path to original ONNX model.
output_path (string): The path to save the extracted ONNX model.
input_names (list of string): The names of the input tensors that to be extracted.
output_names (list of string): The names of the output tensors that to be extracted.
check_model (bool): Whether to run model checker on the extracted model.
"""
if not os.path.exists(input_path):
raise ValueError(f"Invalid input model path: {input_path}")
if not output_path:
raise ValueError("Output model path shall not be empty!")
if not output_names:
raise ValueError("Output tensor names shall not be empty!")
onnx.checker.check_model(input_path)
model = onnx.load(input_path)
e = Extractor(model)
extracted = e.extract_model(input_names, output_names)
onnx.save(extracted, output_path)
if check_model:
onnx.checker.check_model(output_path)