-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
65 lines (64 loc) · 3.85 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
title: About
layout: page
---
<!-- ABOUT -->
<div class="pb-0 pb-sm-2">
<h1 class="title title--h1 first-title title__separate">About Me</h1>
<p> I'm a Ph.D. student in Computer Science at the University of Liverpool (UK),
under the supervision of Yannis Goulermas, <a href="https://www.vlgusev.co.uk/" class="highlighted">Vladimir Gusev</a>,
<a href="http://www.michaelgaultois.com/" class="highlighted">Michael Gaultois</a>, <a href="https://www.csc.liv.ac.uk/~rahul/" class="highlighted">Rahul Savani</a>,
<a href="https://www.liverpool.ac.uk/chemistry/staff/matthew-rosseinsky/" class="highlighted">Matthew Rosseinsky</a>,
and in collaboration with the <a href="https://www.liverpool.ac.uk/leverhulme-research-centre/" class="highlighted"> Leverhulme research centre </a> for functional materials design.
I received my MSc degree in Pure and Applied Mathematics from the <a href="https://web.uniroma2.it/" class="highlighted"> University of Rome "Tor Vergata"</a> (IT). </div>
<!-- What -->
<div class="box-inner pb-0">
<h2 class="title title--h3">What I do</h2>
<p>I work in the exciting field of <strong>AI4Science</strong>, specializing in <strong>AI-driven materials discovery</strong>.
My research encompasses deep learning for material property prediction, representation learning, and inverse materials design using deep generative models.
Currently, I am particularly interested in <strong>Geometric Graph Neural Networks</strong>, <strong>Contrastive Learning</strong>, and <strong>Diffusion Models</strong>.
</p>
<p>You can find a list of my publications <a href="publications.html">here</a>.</p>
<div class="row">
<!-- Case Item -->
<div class="col-12 col-lg-6">
<div class="case-item box box__second">
<img class="case-item__icon" src="assets/img/mat_prop_pred.png" alt="" />
<div>
<h3 class="title title--h5">Material property prediction</h3>
<p class="case-item__caption">I develop and utilize ML frameworks to predict chemical properties of atomistic systems, accelerating the discovery of new compounds for applications.</p>
</div>
</div>
</div>
<!-- Case Item -->
<div class="col-12 col-lg-6">
<div class="case-item box box__second">
<img class="case-item__icon" src="assets/img/time_svg.svg" alt="" />
<div>
<h3 class="title title--h5">Generative design</h3>
<p class="case-item__caption">I am currently exploring generative models for inverse materials design, with a specific focus on diffusion models for crystal structure prediction (CSP).</p>
</div>
</div>
</div>
</div>
</div>
<!-- Industry Projects -->
<div id="sec-industry-projects" class="box-inner box-inner--rounded">
<h2 class="title title--h3">Industry Projects</h2>
<div class="row">
<!-- Case Item -->
<div class="col-12">
<div class="case-item box box__second">
<img class="case-item__icon" src="assets/img/nsg.png" alt="" />
<div>
<h3 class="title title--h4 mb-0">Discovery of new Transparent Conductors using Machine Learning</h3>
<span class="timeline__period">Oct 2020 — ongoing</span>
<p class="case-item__caption">We propose a Machine Learning guided search to accelerate the discovery of new transparent conducting materials, an important class of
semiconductors with a wide range of applications.
</p>
<p>Funded by <a href="https://www.nsg.com/" target="_blank" rel="noopener noreferrer">NSG Group</a></p>
</div>
</div>
</div>
</div>
</div>