-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpretrain.py
127 lines (111 loc) · 5.31 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import torch as t
from torch.utils.data import DataLoader, ConcatDataset
import argparse
from os.path import exists, join
from os import mkdir
import dataset.dataset as dataset
import dataset.coco as coco
from model import student_teacher
from utils import save_weight, load_weight
def salicon_data(batch_size, dataset_path):
#print(batch_size,'!!!')
ds_train = dataset.Salicon(dataset_path, mode='train')
ds_validate = dataset.Salicon(dataset_path, mode='val')
dataloader = {
'train': DataLoader(ds_train, batch_size=batch_size,
shuffle=True, num_workers=4),
'val': DataLoader(ds_validate, batch_size=int(batch_size/2),
shuffle=False, num_workers=4)
}
return dataloader
def coco_data(batch_size, dataset_path):
#size = (96, 128)
size = (192, 256)
ds_train = coco.COCO(dataset_path, mode='train', size=size) # N=100)
ds_test = coco.COCO(dataset_path, mode='test', size=size)
ds_train = ConcatDataset([ds_train, ds_test])
ds_validate = coco.COCO(dataset_path, mode='val', size=size)
dataloader = {
'train': DataLoader(ds_train, batch_size=batch_size,
shuffle=True, num_workers=4),
'val': DataLoader(ds_validate, batch_size=int(batch_size/4),
shuffle=False, num_workers=4),
}
return dataloader
def train_one(model, dataloader, optimizer, mode):
all_loss = []
for i, X in enumerate(dataloader[mode]):
optimizer.zero_grad()
inputs = X['caffe_img'].cuda()
vgg_inputs = X['vgg_img'][0].cuda()
losses = model.forward(inputs, vgg_inputs)
if mode == 'train':
losses.backward()
optimizer.step()
all_loss.append(losses.item())
elif mode == 'val':
with t.no_grad():
all_loss.append(losses.item())
if i%10 == 0:
print('{} current accumulated loss {}'.format(i, np.mean(all_loss)))
#break
return np.mean(all_loss), model
def start_train(batch_size, dataset_name, dataset_path, teacher_path, direct, model_name):
if dataset_name == 'salicon':
dataloader = salicon_data(batch_size, dataset_path)
elif dataset_name == 'coco':
dataloader = coco_data(batch_size, dataset_path)
model = student_teacher.salgan_teacher_student(True, 'C', teacher_path)
model.cuda()
lr = 0.01
lr_decay = 0.1
optimizer = model.get_optimizer(lr)
smallest_val = None
best_epoch = None
for epoch in range(0, 100, 1):
model.train()
loss_train, model = train_one(model, dataloader, optimizer, 'train')
print('{} loss train {}, lr {}'.format(epoch, loss_train, lr))
print('--------------------------------------------->>>>>>')
model.eval()
loss_val, model = train_one(model, dataloader, optimizer, 'val')
print('--------------------------------------------->>>>>>')
print('{} loss val {}'.format(epoch, loss_val))
smallest_val, best_epoch, model, optimizer = save_weight(smallest_val, best_epoch, loss_val, epoch,
direct, model_name, model, optimizer)
if epoch == 15 or epoch == 30 or epoch == 60:
path = '{}/{}/{}_{:f}.pth'.format(direct, model_name, best_epoch, smallest_val)
state_dict, opt_state = load_weight(path, remove_decoder=False)
model.student_net.load_state_dict(state_dict)
# optimizer.load_state_dict(state_dict['optimizer'])
for param_group in optimizer.param_groups:
param_group['lr'] *= lr_decay
lr = lr * lr_decay
if __name__ == '__main__':
path = '/home/feiyan/data/Github/SAL_compress/salgan_pytorch/trained_models/' \
'salgan_adversarial2/models/gen_42.pt'
coco_path = '/data/coco/'
salicon_path = '/data/Datasets/SALICON/'
parser = argparse.ArgumentParser(description='configs for pretrain.')
parser.add_argument('-batch_size', action='store', dest='batch_size',
help='batch size', default=10, type=int)
parser.add_argument('-dataset_name', action='store', dest='dataset_name',
help='dataset_name either coco or salicon')
parser.add_argument('-dataset_path', action='store', dest='dataset_path',
help='path to dataset')
parser.add_argument('-teacher_path', action='store', dest='teacher_path',
help='path to teacher weight (SALGAN)')
parser.add_argument('-save_dir', action='store', dest='save_dir',
help='directory to save pretrained weights', default='checkpoint')
parser.add_argument('-model_name', action='store', dest='model_name',
help='pretrained model name', default='pretrained_model')
args = parser.parse_args()
if not exists(join(args.save_dir, args.model_name)):
if not exists(args.save_dir):
mkdir(args.save_dir)
mkdir(join(args.save_dir, args.model_name))
else:
mkdir(join(args.save_dir, args.model_name))
start_train(batch_size=args.batch_size, dataset_name=args.dataset_name, dataset_path=args.dataset_path,
teacher_path=args.teacher_path, direct=args.save_dir, model_name=args.model_name)