This repository was archived by the owner on Jun 23, 2020. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathclean-data.R
1976 lines (1736 loc) · 74.2 KB
/
clean-data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Clean and Combine Free Code Camp's 2016 New Coder Survey
# Description: This script cleans specifically Free Code Camp's 2016 New
# Coder Survey. The following code is split into four main
# sections: Utility function, Sub-Process functions,
# Sub-Cleaning functions, Main Process functions. The main
# function to perform the entire cleaning and combining is
# the `main()` function at the end of this script.
# Author: Eric Leung (@erictleung)
# Help from: @evaristoc and @SamAI-Software
# Last Updated: 2016 August 4th
# Load in necessary packages
require(dplyr)
# Utility Functions ---------------------------------------
# Description:
# These functions take in arguments to perform simpler transformations
# Title:
# Fix Truncated Job Apply Answer
# Description:
# When passing answers from the first part of the survey to the next,
# apostrophes were thrown out. E.g. if the answer was "I haven't decided",
# it was truncated to "I"
# Input:
# String or vector of strings
# Output:
# String or vector of strings
# Usage:
fix_truncate_job_apply <- function(answer) {
truncateAns <- c()
for (i in 1:length(answer)) {
tempAns <- answer[i] %>%
unlist %>%
ifelse(. == "I", "I'm already applying", .) %>%
ifelse(. == "I haven", "I haven't decided", .)
truncateAns <- c(truncateAns, tempAns)
}
truncateAns
}
# Title:
# Simple Title Case Function
# Description:
# Intended to use in mutate functions to title case strings
# Input:
# List of strings or just a string itself
# Output:
# List of strings or just a string itself
# Usage:
# > simple_title_case("hello world")
# [1] "Hello World"
# > simple_title_case(c("hello world", "simple title case"))
# [1] "Hello World" "Simple Title Case"
# Adapted from: http://stackoverflow.com/a/6364905
simple_title_case <- function(x) {
titleCase <- c()
for (i in 1:length(x)) {
s <- strsplit(x[i], " ")[[1]]
titleS <- paste(toupper(substring(s, 1,1)), substring(s, 2),
sep="", collapse=" ")
titleCase <- c(titleCase, titleS)
}
titleCase
}
# Title:
# Average Range Earning
# Description:
# Take a range string (e.g. "50-60000") and take average (e.g. "55"). In
# this case, there is a string "50-60000" because there was a "k" at the end
# I removed earlier
# Input:
# String or vector
# Output:
# String or vector
# Usage:
# > average_range_earning("50-60000")
# [1] "55000"
# > average_range_earning("50-60")
# [1] "55000"
average_range_earning <- function(x) {
avgRange <- c()
for (i in 1:length(x)) {
tempRange <- x[i] %>% strsplit("-") %>%
unlist %>%
as.numeric %>%
ifelse(. < 100, . * 1000, .) %>%
mean %>%
as.character()
avgRange <- c(avgRange, tempRange)
}
avgRange
}
# Title:
# Average String Range
# Description:
# Take a range string (e.g. "50-60") and take average (e.g. "55").
average_string_range <- function(x) {
avgRange <- c()
for (i in 1:length(x)) {
tempRange <- x[i] %>% strsplit("-|to") %>%
unlist %>%
as.numeric %>%
mean %>%
as.character()
avgRange <- c(avgRange, tempRange)
}
avgRange
}
# Title:
# Change Years to Months
# Description:
# Remove non-numeric characters and change years to months
# Input:
# String or vector of strings
# Output:
# String or vector of strings
# Usage:
# > years_to_months("3")
# [1] "36"
# > years_to_months(c("6", "3", "5"))
# [1] "72" "36" "60"
years_to_months <- function(x) {
monthsDat <- c()
for (i in 1:length(x)) {
tempMonths <- x[i] %>% gsub("[A-Za-z ]", "", .) %>%
(function(x) as.numeric(x) * 12) %>%
as.character()
monthsDat <- c(monthsDat, tempMonths)
}
monthsDat
}
# Title:
# Remove Outliers
# Description:
# This function remove outliers based on threshold where anything equal to
# it or above it is changed to an NA
# Input:
# Numbers and a threshold
# Output:
# Numbers
# Usage:
# > remove_outlier(20, 2)
# [1] NA
# > remove_outlier(c(1, 2, 3, 4, 5, 6), 4)
# [1] 1 2 3 NA NA NA
remove_outlier <- function(x, thres) {
ifelse(test = x >= thres, yes = as.numeric(NA), no = x)
}
# Sub-Process Functions -----------------------------------
# Description:
# These functions perform larger grouped data transformations
# Title:
# Change All Undefined Values to NA
# Description:
# The second dataset contains values from the first part of the survey.
# Those were passed as values and the missing values (i.e. NA) were passed
# as "undefined" and need to be transformed back.
# Input:
# Designed for the second dataset
# Output:
# The second dataset with all the undefined changed to NA
# Usage:
# > part2 <- undefined_to_NA(part2)
undefined_to_NA <- function(part2, changeCols) {
fixedPart2 <- part2
for (col in changeCols) {
varval <- lazyeval::interp(~ ifelse(colName == "undefined",
yes = NA,
no = colName),
colName = as.name(col))
fixedPart2 <- fixedPart2 %>%
mutate_(.dots = setNames(list(varval), col))
}
fixedPart2
}
# Title:
# Change All Yes/No to 1/0
# Description:
# The second dataset contains values from the first part of the survey. Some
# of the yes/no questions were encoded as yes/no and 1/0. This function
# serves to make them consistently into 1/0.
# Input:
# Designed for the second dataset
# Output:
# The second dataset with all yes/no answers changed to 1/0
# Usage:
# > part2 <- yesNo_to_oneZero(part2)
yesNo_to_oneZero <- function(part2, changeCols) {
fixedPart2 <- part2
for (col in changeCols) {
varvalYes <- lazyeval::interp(~ ifelse(colName == "Yes",
yes = "1",
no = colName),
colName = as.name(col))
varvalNo <- lazyeval::interp(~ ifelse(colName == "No",
yes = "0",
no = colName),
colName = as.name(col))
fixedPart2 <- fixedPart2 %>%
mutate_(.dots = setNames(list(varvalYes), col)) %>%
mutate_(.dots = setNames(list(varvalNo), col))
}
fixedPart2
}
# Title:
# Change to Character
# Description:
# Changes the data type of the given column names into character
# Input:
# part1 = the part 1 dataset
# toChr = string or vector of strings with column names needing change
# Output:
# Changed part 1 dataset
# Usage:
# > part1 <- change_to_chr(part1, toChr)
change_to_chr <- function(part1, toChr) {
for (colName in toChr) {
varval <- lazyeval::interp(~ as.character(colHere),
colHere = as.name(colName))
part1 <- part1 %>%
mutate_(.dots = setNames(list(varval), colName))
}
part1
}
# Title:
# Change to Double
# Description:
# Changes the data type of the given column names into double
# Input:
# part2 = the part 2 dataset
# toDbl = string or vector of strings with column names needing change
# Output:
# Changed part 2 dataset
# Usage:
# > part2 <- change_to_dbl(part2, toDbl)
change_to_dbl <- function(part2, toDbl) {
for (colName in toDbl) {
varval <- lazyeval::interp(~ as.double(colHere),
colHere = as.name(colName))
part2 <- part2 %>%
mutate_(.dots = setNames(list(varval), colName))
}
part2
}
# Title:
# Substitution function [WIP]
# Description:
# Used directly on a dplyr data frame to grep substitute
# Input:
# dplyr data frame
# Output:
# dplyr data frame
sub_and_rm <- function(dirtyDat, colName, findStr, replaceStr) {
varval <- lazyeval::interp(~ gsub(f, r, c),
f=findStr,
r=replaceStr,
c=as.name(colName))
dirtyIdx <- dirtyDat %>% select_(colName) %>%
mutate_each(funs(grepl(findStr, ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
subDirty <- dirtyDat %>% filter(dirtyIdx) %>%
mutate_(.dots = setNames(list(varval), colName))
cleanDat <- dirtyDat %>% filter(!dirtyIdx) %>% bind_rows(subDirty)
cleanDat
}
# Title:
# Normalize Text
# Description:
# Normalize text based on searching list and desired single replacement
# using non-standard eval in dplyr: http://stackoverflow.com/a/26003971
# Input:
# inData = dplyr data frame,
# columnName = column you want to change,
# search Terms = search terms in a c() vector,
# replaceWith = replacement string
# Output:
# dplyr data frame
# Usage:
# > cleanPart1 <- normalize_text(inData = cleanPart1,
# + columnName = "JobRoleInterestOther",
# + searchTerms = undecidedWords,
# + replaceWith = "Undecided")
# More on NSE:
# https://cran.r-project.org/web/packages/dplyr/vignettes/nse.html
# Adapted from:
# http://stackoverflow.com/a/26766945
normalize_text <- function(inData, columnName, searchTerms, replaceWith) {
# Setup dynamic naming of variables later in function
varval <- lazyeval::interp(~ replaceText, replaceText = replaceWith)
# Gets indices for rows that need to be changed
searchStr <- paste(searchTerms, collapse = "|")
wordIdx <- inData %>% select_(columnName) %>%
mutate_each(funs(grepl(searchStr, ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
# Change row values to intended words
wordData <- inData %>% filter(wordIdx) %>%
mutate_(.dots = setNames(list(varval), columnName))
# Combine data back together
cleanData <- inData %>% filter(!wordIdx) %>% bind_rows(wordData)
cleanData
}
# Title:
# Create New Column Based on Grep
# Description:
# This function will search for terms in a given column in the rows. It will
# then add a column with the name of your choosing and label rows that
# contain your search term as having that term i.e. give a value of "1".
# Input:
# inData = dplyr data frame,
# colName = column you want to target,
# searchTerms = search terms in a c() vector,
# newCol = name for new column
# Output:
# dplyr data frame with new column
# Usage:
# > cleanPart1 <- search_and_create(inData = cleanPart1,
# + colName = "CodeEventOther", searchTerms = c("meetup", "meetup"),
# + newCol = "CodeEventMeetups")
search_and_create <- function(inData, colName, searchTerms, newCol) {
# Create new column with new name
makeNew <- lazyeval::interp(~ as.character(NA))
cleanData <- inData %>% mutate_(.dots = setNames(list(makeNew), newCol))
# Create search criteria
searchStr <- paste(searchTerms, collapse = "|")
varval <- lazyeval::interp(~ grepl(s,c, ignore.case = TRUE),
s=searchStr,
c=as.name(colName))
# Label target rows as belonging to new column group
mut <- lazyeval::interp(~ ifelse(test = grepl(s, c, ignore.case = TRUE),
yes = "1",
no = NA),
s=searchStr,
c=as.name(colName))
cleanData <- cleanData %>%
mutate_(.dots = setNames(list(mut), newCol))
cleanData
}
# Title:
# Helper Function
# Description:
# Temporary function to use to check if regular expression is targeting the
# rows we think it should be targeting.
# Input:
# part = dplyr data frame,
# col = column you want to target,
# words = string or vector of strings you want to search for,
# printYes = default to NA to just view data, set to 1 to print our data
# frame, and set to anything else to count number of instances
# Usage:
# > part <- part2
# > col <- "MoneyForLearning"
# > words <- c("[^0-9]")
# > helper_filter(part, col, words) # To View
# > helper_filter(part, col, words, 1) # To print data to console
# > helper_filter(part, col, words) # To print number of instances
helper_filter <- function(part, col, words, printYes = NA) {
# Helper code to look at data being filtered to be changed
columnToLookAt <- col # Column name you want to examine
wordSearch <- words %>% # Array of regular expressions to search
paste(collapse = "|")
charIdx <- part %>% select_(columnToLookAt) %>%
mutate_each(funs(grepl(wordSearch, ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
if (is.na(printYes)) {
part %>% filter(charIdx) %>% count_(columnToLookAt) %>% View
} else if (printYes == 1) {
part %>% filter(charIdx) %>% select_(columnToLookAt) %>%
distinct() %>% as.data.frame
} else {
part %>% filter(charIdx) %>% count_(columnToLookAt) %>%
summarise(total = sum(n))
}
}
# Sub-Cleaning Functions ----------------------------------
# Description:
# These functions perform cleaning on specific variables in the data
# Title:
# Clean Expected Earnings
# Description:
# For the expected earnings part of the survey, this function performs all
# the necessary cleaning on that part of the data
clean_expected_earnings <- function(cleanPart1) {
cat("Cleaning responses for expected earnings...\n")
# Remove dollar signs from expected earnings
dollarIdx <- cleanPart1 %>% select(ExpectedEarning) %>%
mutate_each(funs(grepl("\\$", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
dollarData <- cleanPart1 %>% filter(dollarIdx) %>%
mutate(ExpectedEarning = sub("\\$", "", ExpectedEarning))
cleanPart1 <- cleanPart1 %>% filter(!dollarIdx) %>% bind_rows(dollarData)
# Remove commas from expected earnings
commaIdx <- cleanPart1 %>% select(ExpectedEarning) %>%
mutate_each(funs(grepl(",", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
commaData <- cleanPart1 %>% filter(commaIdx) %>%
mutate(ExpectedEarning = sub(",", "", ExpectedEarning))
cleanPart1 <- cleanPart1 %>% filter(!commaIdx) %>% bind_rows(commaData)
# Remove "k" from expected earnings
kIdx <- cleanPart1 %>% select(ExpectedEarning) %>%
mutate_each(funs(grepl("k", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
kData <- cleanPart1 %>% filter(kIdx) %>%
mutate(ExpectedEarning = sub("k", "000", ExpectedEarning))
cleanPart1 <- cleanPart1 %>% filter(!kIdx) %>% bind_rows(kData)
# Change range of expected earnings into average
rangeIdx <- cleanPart1 %>% select(ExpectedEarning) %>%
mutate_each(funs(grepl("-", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
rangeData <- cleanPart1 %>% filter(rangeIdx) %>%
mutate(ExpectedEarning = average_range_earning(ExpectedEarning))
cleanPart1 <- cleanPart1 %>% filter(!rangeIdx) %>% bind_rows(rangeData)
# Remove period from salaries like 50.000 which should be just 50000
thousandsIdx <- cleanPart1 %>% select(ExpectedEarning) %>%
mutate_each(funs(grepl("^\\d{2}\\.", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
thousandsData <- cleanPart1 %>% filter(thousandsIdx) %>%
mutate(ExpectedEarning = sub("\\.", "", ExpectedEarning))
cleanPart1 <- cleanPart1 %>% filter(!thousandsIdx) %>%
bind_rows(thousandsData)
# Remove any non-numeric characters
numericIdx <- cleanPart1 %>% select(ExpectedEarning) %>%
mutate_each(funs(grepl("[A-Za-z]", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
numericData <- cleanPart1 %>% filter(numericIdx) %>%
mutate(ExpectedEarning = gsub("[A-Za-z']*", "", ExpectedEarning))
cleanPart1 <- cleanPart1 %>% filter(!numericIdx) %>%
bind_rows(numericData)
# Change all values to numeric for easier manipulation
cleanPart1 <- cleanPart1 %>%
mutate(ExpectedEarning = as.integer(ExpectedEarning))
# Expected values < 19 set to NA
# Too weird to be monthly income and too small for yearly
below19 <- cleanPart1 %>%
filter(ExpectedEarning < 19)
change19 <- below19 %>%
mutate(ExpectedEarning = NA)
cleanPart1 <- cleanPart1 %>% setdiff(below19) %>% bind_rows(change19)
# Multiply expected 20--200 by 1000
# Too small for monthly, large enough to be annual if 1000x
values20to200 <- cleanPart1 %>%
filter(ExpectedEarning >= 20) %>%
filter(ExpectedEarning <= 200)
change20to200 <- values20to200 %>%
mutate(ExpectedEarning = ExpectedEarning * 1000)
cleanPart1 <- cleanPart1 %>% setdiff(values20to200) %>%
bind_rows(change20to200)
# Remove expected values 201--499
# Too high for annual, too small for monthly
values201to499 <- cleanPart1 %>%
filter(ExpectedEarning >= 201) %>%
filter(ExpectedEarning <= 499)
change201to499 <- values201to499 %>%
mutate(ExpectedEarning = NA)
cleanPart1 <- cleanPart1 %>% setdiff(values201to499) %>%
bind_rows(change201to499)
# Multiply values 500--5999 by 12
# Looks like monthly salary for poor and middle-rich countries
values500to5999 <- cleanPart1 %>%
filter(ExpectedEarning >= 500) %>%
filter(ExpectedEarning <= 5999)
change500to5999 <- values500to5999 %>%
mutate(ExpectedEarning = ExpectedEarning * 12)
cleanPart1 <- cleanPart1 %>% setdiff(values500to5999) %>%
bind_rows(change500to5999)
# Set limit to 200000
values200k <- cleanPart1 %>%
filter(ExpectedEarning > 200000)
change200k <- values200k %>%
mutate(ExpectedEarning = 200000)
cleanPart1 <- cleanPart1 %>% setdiff(values200k) %>%
bind_rows(change200k)
# Change to correct integers e.g. change 0000000 to just 0
cleanPart1 <- cleanPart1 %>%
mutate(ExpectedEarning = as.character(ExpectedEarning))
cat("Finished cleaning responses for expected earnings.\n")
cleanPart1
}
# Title:
# Clean Job Role Interest
# Description:
# This function targets the other job interests people put down and performs
# some cleaning:
# - Normalize variants of "Undecided"
# - Normalize variants of "Cyber Security"
# - Normalize variants of "Game Developer"
# - Normalize variants of "Software Engineer"
# Usage:
# > cleanPart <- clean_job_interest(part)
clean_job_interest <- function(part) {
cat("Cleaning responses for other job interests...\n")
## Title case answers for other job interests
## See if I can simplify this by just mutating
jobRoleOtherYes <- part %>% filter(!is.na(JobRoleInterestOther)) %>%
mutate(JobRoleInterestOther = simple_title_case(JobRoleInterestOther))
jobRoleOtherNo <- part %>% filter(is.na(JobRoleInterestOther))
cleanPart <- jobRoleOtherNo %>% bind_rows(jobRoleOtherYes)
## Change uncertain job roles to "Undecided"
undecidedWords <- c("not sure", "don't know", "not certain",
"unsure", "dont know", "undecided",
"all of the above", "no preference", "not",
"any", "no idea")
cleanPart <- normalize_text(inData = cleanPart,
columnName = "JobRoleInterestOther",
searchTerms = undecidedWords,
replaceWith = "Undecided")
## Normalize cyber security interests to "Cyber Security"
## e.g. "Cyber security" == "Cybersercurity"
cyberWords <- c("cyber", "secure", "penetration tester",
"pentester", "security")
cleanPart <- normalize_text(inData = cleanPart,
columnName = "JobRoleInterestOther",
searchTerms = cyberWords,
replaceWith = "Cyber Security")
## Normalize game developer interests to "Game Developer"
gameWords <- c("game", "games")
cleanPart <- normalize_text(inData = cleanPart,
columnName = "JobRoleInterestOther",
searchTerms = gameWords,
replaceWith = "Game Developer")
## Normalize software engineer interests to "Software Engineer"
softwareWords <- c("software")
cleanPart <- normalize_text(inData = cleanPart,
columnName = "JobRoleInterestOther",
searchTerms = softwareWords,
replaceWith = "Software Engineer")
cat("Finished cleaning responses for other job interests.\n")
cleanPart
}
# Title:
# Clean Code Events
# Description:
# The function performs various transformations to coding event data to make
# it consistent (e.g. fix spelling) and normalize instances of answers to be
# the same. Also, new columns are made for mentions that appear more than
# 1.5% of all other code events.
# Note: honorable mentions to:
# - "LaunchCode"
# Usage:
# > cleanPart <- clean_code_events(cleanPart)
clean_code_events <- function(cleanPart1) {
cat("Cleaning responses for coding events...\n")
# Convert coding events to binary/boolean
codeResources <- cleanPart1 %>%
select(starts_with("CodeEvent"), -CodeEventOther, -CodeEvent) %>%
mutate_each(funs(ifelse(!is.na(.), "1", NA)))
cleanPart1 <- cleanPart1 %>%
select(-starts_with("CodeEvent"), CodeEventOther, CodeEvent) %>%
bind_cols(codeResources)
# Title case other coding events
codingEvents <- cleanPart1 %>% filter(!is.na(CodeEventOther)) %>%
mutate(CodeEventOther = simple_title_case(CodeEventOther))
codeEventsElse <- cleanPart1 %>% filter(is.na(CodeEventOther))
cleanPart1 <- codeEventsElse %>% bind_rows(codingEvents)
# Create new column for response variants of "meetup"
meetupWords <- c("meetup", "meet up", "meet-up", "meetuos")
cleanPart1 <- search_and_create(inData = cleanPart1,
colName = "CodeEventOther",
searchTerms = meetupWords,
newCol = "CodeEventMeetup")
# Normalize variations of "None"
nones <- c("non", "none", "haven't", "havent", "not", "nothing",
"didn't", "n/a", "\bna\b", "never", "nil", "nope")
searchStr <- paste(nones, collapse = "|")
nonesIdx <- cleanPart1 %>% select(CodeEventOther) %>%
mutate_each(funs(grepl(searchStr, ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
nonesData <- cleanPart1 %>% filter(nonesIdx) %>%
mutate(CodeEventOther = NA) %>%
mutate(CodeEventNone = "1")
cleanPart1 <- cleanPart1 %>% filter(!nonesIdx) %>% bind_rows(nonesData)
# Create new column for response variants of "bootcamps"
bootcamps <- c("bootcamp", "boot camp")
cleanPart1 <- search_and_create(inData = cleanPart1,
colName = "CodeEventOther",
searchTerms = bootcamps,
newCol = "CodeEventBootcamp")
# Create new column for response variants of "Rails Girls"
railsGirls <- c("railgirls", "rails girls", "girls on rails", "rail girls")
cleanPart1 <- search_and_create(inData = cleanPart1,
colName = "CodeEventOther",
searchTerms = railsGirls,
newCol = "CodeEventRailsGirls")
# Create new column for response variants of "Django Girls"
djangoGirls <- c("django girl", "djangogirl")
cleanPart1 <- search_and_create(inData = cleanPart1,
colName = "CodeEventOther",
searchTerms = djangoGirls,
newCol = "CodeEventDjangoGirls")
# Create new column for response variants of "Game Jams"
gameJams <- c("game.*?jams?")
cleanPart1 <- search_and_create(inData = cleanPart1,
colName = "CodeEventOther",
searchTerms = gameJams,
newCol = "CodeEventGameJam")
# Create new column for response variants of "Workshop"
workshop <- c("workshop")
cleanPart1 <- search_and_create(inData = cleanPart1,
colName = "CodeEventOther",
searchTerms = workshop,
newCol = "CodeEventWorkshop")
cat("Finished cleaning responses for coding events.\n")
cleanPart1
}
# Title:
# Clean Podcasts
# Description:
# Cleans the podcasts answers in general but mostly cleans people's answers
# for "Other". Performs the following:
# - Convert Podcasts to binary/boolean
# - Normalize variations of "None" in Podcast Other back to designated col
# - Normalize variations of "Software Engineering Daily" in Podcast Other
# back to designated column
# - Add new columns for other podcasts greater than 1.5% of mentions in Other
# - "Ruby Rogues"
# - "Shop Talk Show"
# - "Developer Tea"
# - "Programming Throwdown"
# - ".NET Rocks"
# - "Talk Python to Me"
# - "JavaScript Air"
# - The Web Ahead"
# - NOTE: honorable mentions to get their own column
# - "Code Pen Radio"
# - "Trav and Los"
# - "Giant Robots Smashing into other Giant Robots"
clean_podcasts <- function(cleanPart) {
cat("Cleaning responses for other podcasts...\n")
# Convert Podcasts to binary/boolean
podcasts <- cleanPart %>%
select(starts_with("Podcast"), -PodcastOther, -Podcast) %>%
mutate_each(funs(ifelse(!is.na(.), "1", NA)))
cleanPart <- cleanPart %>%
select(-starts_with("Podcast"), PodcastOther, Podcast) %>%
bind_cols(podcasts)
# Normalize variations of "None" in PodcastOther
nonePod <- c("non", "none", "haven't", "havent", "not a",
"nothing", "didn't", "n/a", "\bna\b", "never",
"nil", "nope", "not tried", "have not", "do not",
"don't")
searchStr <- paste(nonePod, collapse = "|")
nonesPodIdx <- cleanPart %>% select(PodcastOther) %>%
mutate_each(funs(grepl(searchStr, ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
nonesPodData <- cleanPart %>% filter(nonesPodIdx) %>%
mutate(PodcastOther = NA) %>%
mutate(PodcastNone = "1")
cleanPart <- cleanPart %>% filter(!nonesPodIdx) %>%
bind_rows(nonesPodData)
# Normalize variations of "Software Engineering Daily" in PodcastOther
sePod <- c("software engineering")
searchStr <- paste(sePod, collapse = "|")
sePodIdx <- cleanPart %>% select(PodcastOther) %>%
mutate_each(funs(grepl(searchStr, ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
sePodData <- cleanPart %>% filter(sePodIdx) %>%
mutate(PodcastSEDaily = "1")
cleanPart <- cleanPart %>% filter(!sePodIdx) %>%
bind_rows(sePodData)
# New column for "Ruby Rogues"
rubyRogues <- c("rubyRogues", "ruby rogues", "ruby rogue")
cleanPart <- search_and_create(inData = cleanPart,
colName = "PodcastOther",
searchTerms = rubyRogues,
newCol = "PodcastRubyRogues")
# New column for "Shop Talk Show"
shopTalk <- c("shoptalk", "shop talk", "talk shop show",
"shoptalkshow", "shop talk show", "talkshop")
cleanPart <- search_and_create(inData = cleanPart,
colName = "PodcastOther",
searchTerms = shopTalk,
newCol = "PodcastShopTalk")
# New column for "Developer Tea"
developerTea <- c("developertea", "developer's tea", "developer tea",
"devtea")
cleanPart <- search_and_create(inData = cleanPart,
colName = "PodcastOther",
searchTerms = developerTea,
newCol = "PodcastDeveloperTea")
# New column for "Programming Throwdown"
progThrow <- c("programming throwdown", "programmer throwdown",
"programing throwdown")
cleanPart <- search_and_create(inData = cleanPart,
colName = "PodcastOther",
searchTerms = progThrow,
newCol = "PodcastProgrammingThrowDown")
# New column for ".Net Rocks"
dotNet <- c("net rocks", "rocks", "dotnetrocks")
cleanPart <- search_and_create(inData = cleanPart,
colName = "PodcastOther",
searchTerms = dotNet,
newCol = "PodcastDotNetRocks")
# New column for "Talk Python to Me"
talkPython <- c("talk python", "talkpython")
cleanPart <- search_and_create(inData = cleanPart,
colName = "PodcastOther",
searchTerms = talkPython,
newCol = "PodcastTalkPython")
# New column for "JavaScript Air"
jsAir <- c("jsair", "js air", "javascript air")
cleanPart <- search_and_create(inData = cleanPart,
colName = "PodcastOther",
searchTerms = jsAir,
newCol = "PodcastJsAir")
# New column for "Hanselminutes"
hansel <- c("hanselminutes")
cleanPart <- search_and_create(inData = cleanPart,
colName = "PodcastOther",
searchTerms = hansel,
newCol = "PodcastHanselminutes")
# New column for "The Web Ahead"
webAhead <- c("web ahead")
cleanPart <- search_and_create(inData = cleanPart,
colName = "PodcastOther",
searchTerms = webAhead,
newCol = "PodcastWebAhead")
# New column for "Coding Blocks"
codingBlocks <- c("codingblocks", "coding blocks")
cleanPart <- search_and_create(inData = cleanPart,
colName = "PodcastOther",
searchTerms = codingBlocks,
newCol = "PodcastCodingBlocks")
cat("Finished cleaning responses for other podcasts.\n")
cleanPart
}
# Title:
# Clean Hours Learned Per Week
# Usage:
# > cleanPart <- clean_hours_learn(cleanPart)
clean_hours_learn <- function(cleanPart) {
cat("Cleaning responses for hours of learning per week...\n")
# Remove the word "hour(s)"
hoursIdx <- cleanPart %>% select(HoursLearning) %>%
mutate_each(funs(grepl("hours", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
hoursData <- cleanPart %>% filter(hoursIdx) %>%
mutate(HoursLearning = sub("hours.*", "", HoursLearning))
cleanPart <- cleanPart %>% filter(!hoursIdx) %>% bind_rows(hoursData)
# Remove hyphen and "to" for ranges of hours
rangeHrIdx <- cleanPart %>% select(HoursLearning) %>%
mutate_each(funs(grepl("-|to", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
rangeHrData <- cleanPart %>% filter(rangeHrIdx) %>%
mutate(HoursLearning = average_string_range(HoursLearning))
cleanPart <- cleanPart %>% filter(!rangeHrIdx) %>%
bind_rows(rangeHrData)
# Remove hours greater than 100 hours
cleanPart <- cleanPart %>%
mutate(HoursLearning = as.integer(HoursLearning)) %>%
mutate(HoursLearning = ifelse(HoursLearning > 100, NA, HoursLearning))
cat("Finished cleaning responses for hours of learning per week.\n")
cleanPart
}
# Title:
# Clean Months Programming
# Usage:
# > cleanPart <- clean_months_programming(cleanPart)
clean_months_program <- function(cleanPart) {
cat("Cleaning responses for number of months programming...\n")
# Change years to months
yearsProgramIdx <- cleanPart %>% select(MonthsProgramming) %>%
mutate_each(funs(grepl("years", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
yearsProgramData <- cleanPart %>% filter(yearsProgramIdx) %>%
mutate(MonthsProgramming = years_to_months(MonthsProgramming))
cleanPart <- cleanPart %>% filter(!yearsProgramIdx) %>%
bind_rows(yearsProgramData)
# Remove non-numeric characters
cleanPart <- cleanPart %>% sub_and_rm(colName = "MonthsProgramming",
findStr = "[A-Za-z ]",
replaceStr = "")
# Average the range of months
avgMonthIdx <- cleanPart %>% select(MonthsProgramming) %>%
mutate_each(funs(grepl("-", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
avgMonthData <- cleanPart %>% filter(avgMonthIdx) %>%
mutate(MonthsProgramming = average_string_range(MonthsProgramming))
cleanPart <- cleanPart %>% filter(!avgMonthIdx) %>%
bind_rows(avgMonthData)
# Remove outlier months of programming
# 744 months = 62 years = 1954 = Year FORTRAN was invented
cleanPart <- cleanPart %>%
mutate(MonthsProgramming = as.integer(MonthsProgramming)) %>%
mutate(MonthsProgramming = remove_outlier(MonthsProgramming, 744)) %>%
mutate(MonthsProgramming = as.integer(MonthsProgramming))
cat("Finished cleaning responses for number of months programming.\n")
cleanPart
}
# Title:
# Clean Salary Post Bootcamp
# Usage:
# > cleanPart <- clean_salary_post(cleanPart)
clean_salary_post <- function(cleanPart) {
cat("Cleaning responses for salaries after bootcamps...\n")
# Remove outlier salaries
cleanPart <- cleanPart %>%
mutate(BootcampPostSalary = remove_outlier(BootcampPostSalary, 1e10))
# Change all values to numeric for easier manipulation
cleanPart <- cleanPart %>%
mutate(BootcampPostSalary = as.integer(BootcampPostSalary))
# Expected values < 19 set to NA
# Too weird to be monthly income and too small for yearly
below19 <- cleanPart %>%
filter(BootcampPostSalary < 19)
change19 <- below19 %>%
mutate(BootcampPostSalary = NA)
cleanPart <- cleanPart %>% setdiff(below19) %>% bind_rows(change19)
# Multiply expected 20--200 by 1000
# Too small for monthly, large enough to be annual if 1000x
values20to200 <- cleanPart %>%
filter(BootcampPostSalary >= 20) %>%
filter(BootcampPostSalary <= 200)
change20to200 <- values20to200 %>%
mutate(BootcampPostSalary = BootcampPostSalary * 1000)
cleanPart <- cleanPart %>% setdiff(values20to200) %>%
bind_rows(change20to200)
# Remove expected values 201--499
# Too high for annual, too small for monthly
values201to499 <- cleanPart %>%
filter(BootcampPostSalary >= 201) %>%
filter(BootcampPostSalary <= 499)
change201to499 <- values201to499 %>%
mutate(BootcampPostSalary = NA)
cleanPart <- cleanPart %>% setdiff(values201to499) %>%
bind_rows(change201to499)
# Multiply values 500--5999 by 12
# Looks like monthly salary for poor and middle-rich countries
values500to5999 <- cleanPart %>%
filter(BootcampPostSalary >= 500) %>%
filter(BootcampPostSalary <= 5999)
change500to5999 <- values500to5999 %>%
mutate(BootcampPostSalary = BootcampPostSalary * 12)
cleanPart <- cleanPart %>% setdiff(values500to5999) %>%
bind_rows(change500to5999)
# Set limit to 200000
values200k <- cleanPart %>%
filter(BootcampPostSalary > 200000)
change200k <- values200k %>%
mutate(BootcampPostSalary = 200000)
cleanPart <- cleanPart %>% setdiff(values200k) %>%
bind_rows(change200k)
# Change to correct integers e.g. change 0000000 to just 0
cleanPart <- cleanPart %>%
mutate(BootcampPostSalary = as.integer(BootcampPostSalary)) %>%
mutate(BootcampPostSalary = as.character(BootcampPostSalary))
cat("Finished cleaning responses for salaries after bootcamps.\n")
cleanPart
}
# Title:
# Clean Money Spent on Learning
# Usage:
# > cleanPart <- clean_money_learning(cleanPart)
clean_money_learning <- function(cleanPart) {
cat("Cleaning responses for money used for learning...\n")
# Change variants of "None" to 0
moneyNone <- c("nil", "none", "not")
cleanPart <- cleanPart %>%
normalize_text(columnName = "MoneyForLearning",
searchTerms = moneyNone,
replaceWith = "0")
# Remove dollar sign and other symbols not including periods
cleanPart <- cleanPart %>% sub_and_rm(colName = "MoneyForLearning",
findStr = "\\$|>|<|\\(|\\)",
replaceStr = "")
# Remove other text
cleanPart <- cleanPart %>% sub_and_rm(colName = "MoneyForLearning",
findStr = "[A-Za-z ]",
replaceStr = "")
# Average ranges
avgLearnIdx <- cleanPart %>% select(MoneyForLearning) %>%
mutate_each(funs(grepl("-", ., ignore.case = TRUE))) %>%
unlist(use.names = FALSE)
avgLearnData <- cleanPart %>% filter(avgLearnIdx) %>%
mutate(MoneyForLearning = average_string_range(MoneyForLearning))
cleanPart <- cleanPart %>% filter(!avgLearnIdx) %>%
bind_rows(avgLearnData)
# Floor values to nearest dollar using as.integer
cleanPart <- cleanPart %>%
mutate(MoneyForLearning = as.integer(MoneyForLearning))