-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
63 lines (50 loc) · 2.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
!pip install fastapi uvicorn pyngrok diffusers transformers accelerate
!pip install git+https://github.com/huggingface/diffusers.git
import torch
import numpy as np
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
import uvicorn
from pyngrok import ngrok, conf
import asyncio
app = FastAPI()
# 파이프라인 설정
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
class VideoRequest(BaseModel):
prompt: str
num_inference_steps: int = 50
guidance_scale: float = 9.0
@app.post("/generate-video")
async def generate_video(request: VideoRequest):
try:
# 비디오 생성
video_frames = pipe(
request.prompt,
num_inference_steps=request.num_inference_steps,
guidance_scale=request.guidance_scale
).frames
# 필요한 변환 적용
video_frames = video_frames.squeeze(0)
video_frames = (video_frames * 255).astype("uint8")
# 색상 향상
#video_frames = np.clip(video_frames * 1.2, 0, 255).astype("uint8")
# 비디오 저장
video_path = export_to_video(video_frames)
return {"video_path": video_path}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Configure ngrok with your authtoken
conf.get_default().auth_token = "2j27vD2VtJOyWNLlG1Hhe6aUTVl_782M5FWdcUq833RhR4ZhE" # Replace with your actual authtoken
# ngrok 터널 생성
ngrok_tunnel = ngrok.connect(8000)
print('Public URL:', ngrok_tunnel.public_url)
# FastAPI 애플리케이션 실행
if __name__ == "__main__":
config = uvicorn.Config(app, host="0.0.0.0", port=8000)
server = uvicorn.Server(config)
# Use asyncio.create_task to run the server within the existing event loop
asyncio.create_task(server.serve())