-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathiltest.py
1350 lines (1129 loc) · 50 KB
/
iltest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!flask/bin/python
from __future__ import division
from flask import Flask, jsonify, abort, request, make_response, url_for
import json
import pickle
import base64
import numpy
import math
import scipy
import random
from copy import deepcopy
from numpy import array, shape, where, in1d
import ast
import io
from io import BytesIO
import cStringIO
from numpy import random
from scipy.stats import chisquare
import operator
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot
import matplotlib.pyplot as plt
from operator import itemgetter
#from PIL import Image ## Hide for production
app = Flask(__name__, static_url_path = "")
"""
JSON Parser for interlabtest
"""
def getJsonContents (jsonInput):
try:
dataset = jsonInput["dataset"]
predictionFeature = jsonInput["predictionFeature"]
parameters = jsonInput["parameters"]
dataEntry = dataset.get("dataEntry", None)
variables = dataEntry[0]["values"].keys()
owners_labs = []
target_variable_values = []
target_var_with_replicates = [] ## replicates
uncertainty_values = []
for i in range(len(dataEntry)):
owners_labs.append(dataEntry[i]["compound"].get("ownerUUID"))
for j in variables:
temp = dataEntry[i]["values"].get(j)
temp_list = deepcopy(temp)
if isinstance (temp, list):
for k in range (len(temp)):
temp[k] = float(temp[k])
temp_list[k] = float(temp_list[k]) ## replicates
temp_list[k] = round(temp_list[k], 2) ## replicates
temp = numpy.average(temp)
temp = round(temp, 2)
else:
try:
if isinstance (float(temp), float):
temp = float(temp)
temp = round(temp, 2)
except:
pass
if j == predictionFeature: #values == "predictionFeature"
target_variable_values.append(temp)
target_var_with_replicates.append(temp_list) ## replicates
else:
uncertainty_values.append(temp)
#uncertainty_values = [] # test case
if uncertainty_values == []:
for i in range (len(target_variable_values)):
uncertainty_values.append(0)
"""
data_list = [[],[],[]]
data_list[0] = owners_labs
data_list[1] = target_variable_values
data_list[2] = uncertainty_values
"""
data_list = []
data_list.append(owners_labs)
data_list.append(target_variable_values)
data_list.append(uncertainty_values)
data_with_replicates = [] ## replicates
data_with_replicates.append(owners_labs)
data_with_replicates.append(target_var_with_replicates) ## replicates
data_with_replicates.append(uncertainty_values)
except(ValueError, KeyError, TypeError):
print "Error: Please check JSON syntax... \n"
#data_list = sorted(data_list, key=itemgetter(1))
data_list_transposed = map(list, zip(*data_list))
data_with_replicates_transposed = map(list, zip(*data_with_replicates))
return data_list_transposed, data_list, data_with_replicates_transposed, data_with_replicates # report in reverse # with replicates
"""
LOCAL for csv and txt files - Get data. Returns list AND list_transposed
"""
def get_data ():
path = "C:/Users/Georgios Drakakis/Desktop/Table8Unsorted.csv"
#path = "C:/Users/Georgios Drakakis/Desktop/Table2.txt"
# 1 =file has column names, 0 = no, just data
has_header = 1
# "," || "\t"
delimitter = ","
#delimitter = "\t"
dataObj = open(path)
my_list = []
if has_header == 1:
header = dataObj.readline()
header = header.strip()
header = header.split(delimitter)
while 1:
line = dataObj.readline()
if not line:
break
else:
line = line.strip()
line = line.replace("'", "")
temp = line.split(delimitter)
for i in range (1,len(temp)):
temp[i] = eval(temp[i])
if isinstance (temp[i], list):
for j in range (len(temp[i])):
temp[i][j] = float(temp[i][j])
temp[i] = numpy.average(temp[i])
else:
try:
if isinstance (float(temp[i]), float):
temp[i] = float(temp[i])
except:
pass
#print temp
my_list.append(temp)
#print my_list
# my_list = [ [Lab, Value, Uncertainty], [Lab, Value, Uncertainty], ...]
# my_list_transposed = [ [Labs], [Values], [Uncertainties] ], sorted by Values
my_list = sorted(my_list, key=itemgetter(1))
my_list_transposed = map(list, zip(*my_list))
return header, my_list, my_list_transposed
"""
initialise robust average and standard deviation
*before* Algorithm A
"""
def init_robust_avg_and_std (sorted_data_list):
x_star = numpy.median(sorted_data_list)
median_list = abs(sorted_data_list - x_star)
s_star = 1.483*numpy.median(median_list)
x_star = round (x_star, 2)
s_star = round (s_star, 2)
return x_star, s_star
"""
Algorithm A
"""
def algorithm_a(sorted_data_list, x_star, s_star):
delta = 1.5*s_star
new_sorted_data_list = []
for i in range (len(sorted_data_list)):
if sorted_data_list[i] < x_star - delta:
new_sorted_data_list.append(x_star - delta)
elif (sorted_data_list[i] > x_star + delta):
new_sorted_data_list.append(x_star + delta)
else:
new_sorted_data_list.append(sorted_data_list[i])
new_sorted_data_list = numpy.array(new_sorted_data_list)
x_star_new = sum(new_sorted_data_list)/len(new_sorted_data_list)
s_star_new = 1.134*numpy.sqrt( (sum(numpy.power (new_sorted_data_list - x_star_new,2 ))) / (len(new_sorted_data_list) - 1) )
x_star_new = round(x_star_new,2)
s_star_new = round(s_star_new,2)
return x_star_new, s_star_new, new_sorted_data_list
"""
Loop Algorithm A until values converge
"""
def loop_algorithm_a (sorted_data_list):
x,s = init_robust_avg_and_std(sorted_data_list)
tempx, temps = x,s
temp_list = deepcopy(sorted_data_list)
while 1:
new_tempx, new_temps, new_temp_list = algorithm_a (temp_list, tempx, temps)
if new_tempx == tempx and new_temps == temps:
break
else:
tempx = new_tempx
temps = new_temps
temp_list = deepcopy(new_temp_list)
return new_temp_list, tempx, temps # rename????
"""
Get standard uncertainty of assigned value from expert labs
"""
def get_uncertainty_for_assigned_value(s, p, uncertainties = []):
#print "\n\n\n", s,p,uncertainties, "\n\n\n"
if uncertainties != []:
U_X_assigned = (1.25 / p) * numpy.sqrt(sum(numpy.power(uncertainties,2)))
else:
U_X_assigned = (1.25 * s) / numpy.sqrt(p)
U_X_assigned = round (U_X_assigned,2)
return U_X_assigned
"""
Removes data likely to make plots unreadable
"""
def kill_outliers(dataTransposed, robust_avg_x, robust_std_s):
temp = [[],[],[]]
for i in range (len(dataTransposed[1])):
if dataTransposed[1][i] < robust_avg_x + 3.5* robust_std_s and dataTransposed[1][i] > robust_avg_x - 3.5* robust_std_s:
temp[0].append(dataTransposed[0][i])
temp[1].append(dataTransposed[1][i])
temp[2].append(dataTransposed[2][i])
dataTransposed = deepcopy(temp)
return dataTransposed
"""
Create histograms for report (on raw data)
"""
def hist_plots(num_bins, my_list_transposed, header):
bins = numpy.linspace(min(my_list_transposed[1]), max(my_list_transposed[1]), num_bins+1)
for i in range (1,len(bins)):
bins[i] += 0.000001
#print "BINS--->", bins
labels = []
for i in range (num_bins):
labels.append("")
#print my_list_transposed[1]
#print bins
for i in range (len(my_list_transposed[1])):
for j in range (num_bins):
#print j
if my_list_transposed[1][i] >= bins[j] and my_list_transposed[1][i] <= bins[j+1]: #and labels[i] =="":
labels[j] = labels[j] + " " + str(my_list_transposed[0][i])
#print "names: ", my_list_transposed[0]
#print "labels: ", labels
colours = []
#print "Number of bins: ", num_bins
for i in range (num_bins):
#colours.append(random.rand(3,1)) # random colour scheme
colours.append([random.uniform(0, 1) for p in range(0, 3)])
#print colours
#myFIGA1 = plt.figure(figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k') ###
myFIGA1a = plt.figure()
# hist returns: num inst, bin bound, patches
#nn, bb, pp = plt.hist(my_list_transposed[1], bins=num_bins, histtype='barstacked', color = None, stacked=True) # , normed=True
nn, bb, pp = plt.hist(my_list_transposed[1], bins=num_bins, histtype='barstacked', color = [random.uniform(0, 1) for p in range(0, 3)], stacked=True) # , normed=True
#until 16 05 2018
#nn, bb, pp = plt.hist(my_list_transposed[1], bins=num_bins, histtype='barstacked', color = random.rand(3,1), stacked=True) # , normed=True
#for i in range (len(bb)):
# bb += 0.000001
## copy labels for 2nd histogram (first copy gets altered here)
labels_copy = deepcopy(labels)
#print "labels copy: ", labels_copy
for i in range (len(pp)-1,0,-1):
if labels[i] == "":
labels.pop(i)
pp.pop(i)
colours.pop(i)
for i in range (len(pp)):
plt.setp(pp[i], color=colours[i]) #until 16 05 2018
#plt.setp(pp[i], color=None)
plt.xlabel("Measurements")
plt.ylabel("Number of Labs")
plt.title('Histogram of data as reported')
#with subplot
ax = myFIGA1a.add_subplot(111)
#myLegend = ax.legend(pp, labels,bbox_to_anchor=(1.05, 1, 1.25, 0), loc=2, mode="expand", borderaxespad=0.,fontsize = 'x-small')
myLegend = ax.legend(pp, labels,bbox_to_anchor=(1.05, 1, 1.25, 0), loc=2, borderaxespad=0.,fontsize = 'x-small')
plt.tight_layout()
##plt.show() #HIDE show on production
sio = BytesIO()
myFIGA1a.savefig(sio, dpi=300, format='png', bbox_extra_artists=(myLegend,),bbox_inches='tight')
sio.seek(0)
fig1a_encoded = base64.b64encode(sio.getvalue())
plt.close()
myFIGA1b = plt.figure()
X = []
Y = []
for i in range (len(bb)-1):
X.append( (bb[i] + bb[i+1]) / 2 )
Y.append(0)
plt.plot(Y,X, 'r--')
for i in range (len(X)):
plt.text(Y[i]+0.1, X[i], labels_copy[i])
plt.axis([0, 1, min(bb), abs((min(bb)*0.05)+max(bb))]) ##abs
plt.xlabel(header[0])
plt.ylabel(header[1])
plt.title('Histogram of data as reported')
ax = myFIGA1b.add_subplot(111)
#myLegend = ax.legend(pp, labels,bbox_to_anchor=(1.05, 1, 1.25, 0), loc=2, borderaxespad=0.,fontsize = 'x-small')
ax.axes.get_xaxis().set_ticks([])
plt.tight_layout()
##plt.show() #HIDE show on production
sio = BytesIO()
myFIGA1b.savefig(sio, dpi=300, format='png')
sio.seek(0)
fig1b_encoded = base64.b64encode(sio.getvalue())
plt.close()
return fig1a_encoded, fig1b_encoded
"""
Create histograms for report (on raw data)
"""
def hist_bias(num_bins, my_list_transposed, header):
bins = numpy.linspace(min(my_list_transposed[1]), max(my_list_transposed[1]), num_bins+1)
labels = []
for i in range (num_bins):
labels.append("")
for i in range (len(my_list_transposed[1])):
for j in range (num_bins):
if my_list_transposed[1][i] >= bins[j] and my_list_transposed[1][i] <= bins[j+1]:
labels[j] = labels[j] + " " + str(my_list_transposed[0][i])
colours = []
#print num_bins
for i in range (num_bins):
colours.append([random.uniform(0, 1) for p in range(0, 3)]) # random colour scheme
#print "\n\n\n colours \n\n\n", colours, "\n\n\n"
#myFIGA1 = plt.figure(figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k') ###
myFIGA2a = plt.figure()
# hist returns: num inst, bin bound, patches
nn, bb, pp = plt.hist(my_list_transposed[1], bins=num_bins, histtype='barstacked', color = [random.uniform(0, 1) for p in range(0, 3)], stacked=True) # , normed=True
# until 15 05 2018
#nn, bb, pp = plt.hist(my_list_transposed[1], bins=num_bins, histtype='barstacked', color = random.rand(3,1), stacked=True) # , normed=True
## copy labels for 2nd histogram (first copy gets altered here)
labels_copy = deepcopy(labels)
for i in range (len(pp)-1,0,-1):
if labels[i] == "":
labels.pop(i)
pp.pop(i)
colours.pop(i)
for i in range (len(pp)):
plt.setp(pp[i], color=colours[i]) ## 16 05 2018
#plt.setp(pp[i], color=None)
myLegend = plt.legend(pp, labels,bbox_to_anchor=(1.05, 1, 1.25, 0), loc=2, borderaxespad=0.,fontsize = 'x-small')
plt.xlabel("Values")
plt.ylabel("Number of Laboratories")
plt.title('Histogram of estimates of laboratory bias')
plt.tight_layout()
##plt.show() #HIDE show on production
sio = BytesIO()
myFIGA2a.savefig(sio, dpi=300, format='png', bbox_extra_artists=(myLegend,),bbox_inches='tight')
sio.seek(0)
fig2a_encoded = base64.b64encode(sio.getvalue())
# SIO Version
#sio = cStringIO.StringIO()
#myFIGA2a.savefig(sio, dpi=300, format='png', bbox_extra_artists=(myLegend,), bbox_inches='tight')
#saveas = pickle.dumps(sio.getvalue()) ###
#fig2a_encoded = base64.b64encode(saveas)
plt.close()
myFIGA2b = plt.figure()
X = []
Y = []
for i in range (len(bb)-1):
X.append( (bb[i] + bb[i+1]) / 2 )
Y.append(0)
plt.plot(Y,X, 'r--')
for i in range (len(X)):
plt.text(Y[i]+0.1, X[i], labels_copy[i])
plt.axis([0, 1, min(bb), abs(min(bb))+max(bb)]) ##abs
plt.xlabel(" Laboratories")
plt.ylabel("Bias Estimate")
plt.title('Histogram of estimates of laboratory bias')
ax = myFIGA2b.add_subplot(111)
ax.axes.get_xaxis().set_ticks([])
plt.tight_layout()
##plt.show() #HIDE show on production
sio = BytesIO()
myFIGA2b.savefig(sio, dpi=300, format='png')
sio.seek(0)
fig2b_encoded = base64.b64encode(sio.getvalue())
plt.close()
return fig2a_encoded, fig2b_encoded
"""
Plot Ranks and error bars
"""
def plot_ranks (ranks, ranks_pc, values, uncertainties, rob_avg, uncertaintyAV):
myFIGA3 = plt.figure()
#0502
xx = [x for y, x in sorted(zip(ranks, values))]
yy = [y for y, x in sorted(zip(ranks, values))]
#print "ranks, values", ranks, values, "\n"
#print xx,yy
plt.plot(ranks, values, 'ro')
#plt.plot(ranks, values)
plt.errorbar(ranks, values, yerr = uncertainties, fmt='o')
plt.xlim([round(min(ranks)) - 1, round(max(ranks)) + 1,])
#sio = cStringIO.StringIO()
#myFIGA3.savefig(sio, dpi=300, format='png')
#saveas = pickle.dumps(sio.getvalue())
#fig3_encoded = base64.b64encode(saveas)
exp_U_95_plus = round(rob_avg + 2*uncertaintyAV)
exp_U_95_minus = round(rob_avg - 2*uncertaintyAV)
plt.axhline(y=round(rob_avg),c="green",linewidth=1.5,zorder=0)
plt.axhline(y=exp_U_95_plus,c="green",linewidth=0.5,zorder=0, ls = 'dashed')
plt.axhline(y=exp_U_95_minus,c="green",linewidth=0.5,zorder=0, ls = 'dashed')
plt.xlabel("Laboratory Ranks")
plt.ylabel("Values and uncertainties")
plt.title('Normal probability plot of expanded uncertainties for lab rankings')
plt.tight_layout()
##plt.show() #HIDE show on production
sio = BytesIO()
myFIGA3.savefig(sio, dpi=300, format='png')
sio.seek(0)
fig3_encoded = base64.b64encode(sio.getvalue())
plt.close()
myFIGA4 = plt.figure()
plt.plot(ranks_pc, values, 'ro')
#plt.plot(ranks_pc, values)
plt.errorbar(ranks_pc, values, yerr = uncertainties, fmt='o')
plt.xlim([round(min(ranks_pc)) - 1, round(max(ranks_pc)) + 1,])
#sio = cStringIO.StringIO()
#myFIGA4.savefig(sio, dpi=300, format='png')
#saveas = pickle.dumps(sio.getvalue())
#fig4_encoded = base64.b64encode(saveas)
plt.axhline(y=round(rob_avg),c="green",linewidth=1.5,zorder=0)
plt.axhline(y=exp_U_95_plus,c="green",linewidth=0.5,zorder=0, ls = 'dashed')
plt.axhline(y=exp_U_95_minus,c="green",linewidth=0.5,zorder=0, ls = 'dashed')
plt.xlabel("Laboratory % Ranks")
plt.ylabel("Values and uncertainties")
plt.title('Normal probability plot of expanded uncertainties for % ranking of labs')
plt.tight_layout()
##plt.show() #HIDE show on production
sio = BytesIO()
myFIGA4.savefig(sio, dpi=300, format='png')
sio.seek(0)
fig4_encoded = base64.b64encode(sio.getvalue())
plt.close()
return fig3_encoded, fig4_encoded
"""
plot ranks % against raw values
"""
def ranks_vs_values (values, ranks_pc, z_scores):
myFIGA5 = plt.figure()
z = numpy.polyfit(ranks_pc,values,1)
p = numpy.poly1d(z)
plt.plot(ranks_pc, values, 'ro', ranks_pc, p(ranks_pc), 'r--')
#plt.plot(ranks_pc, values, 'ro')
plt.xlim([round(min(ranks_pc)) - 1, round(max(ranks_pc)) + 1,])
# loop for outliers AFTER Z SCORE TEST ###
for i in range (len(ranks_pc)):
if z_scores [i] < -2 or z_scores [i] > 2:
#plt.annotate("Z = " + str(z_scores[i]), xy = (ranks_pc[i], values[i]), xytext=(round(ranks_pc[i] + 0.05*max(ranks_pc)), round(values[i] + 0.05*max(values))), arrowprops=dict(facecolor='black', shrink=0.05))
plt.annotate("Z = " + str(z_scores[i]), xy = (ranks_pc[i], values[i]), xytext=(round(ranks_pc[i] - 0.05*max(ranks_pc)), round(values[i] - 0.05*max(values))), arrowprops=dict(facecolor='black', shrink=0.05))
plt.xlabel("Laboratory Percentage Rank")
plt.ylabel("Values")
plt.title('Normal probability plot of measurement results')
#ax = myFIGA5.add_subplot(111)
#ax.axes.get_xaxis().set_ticks([])
plt.tight_layout()
##plt.show() #HIDE show on production
sio = BytesIO()
myFIGA5.savefig(sio, dpi=300, format='png', bbox_inches="tight")
sio.seek(0)
fig5_encoded = base64.b64encode(sio.getvalue())
plt.close()
return fig5_encoded
"""
Conceal Lab names
"""
def anonimise_labs (myList):
nameDic = {}
for i in range (len(myList[0])):
nameDic["Row_" + str(i+1)] = ["Lab_" + str(i+1), myList[0][i]]
myList[0][i] = "Lab_" + str(i+1)
return myList, nameDic
"""
Ranks and percentage ranks
"""
def get_ranks (data_list):
rank = []
i,j = 0,0
while 1:
if i < len(data_list):
count_rank = 1
count_replicate = 1
j = 0
while 2 and j < len(data_list):
if (data_list[i] > data_list[j]) :
count_rank += 1
if (data_list[i] == data_list[j] and i !=j) :
count_replicate += 1
j += 1
if count_replicate >1:
count_repl_rank = 0
for repl in range (count_replicate):
count_repl_rank = count_repl_rank + count_rank + repl
rank.append( count_repl_rank / count_replicate)
else:
rank.append(count_rank)
i += 1
else:
break
rank_pc = []
for i in range (len(rank)):
#rank_pc.append(round(100*(rank[i] - 0.5)/ len(rank),2)) # 2 decimals
rank_pc.append(round(100*(rank[i] - 0.5)/ len(rank),0))
#print "rank, datalist", rank, data_list, "\n"
return rank, rank_pc
"""
Ranks and percentage ranks
def get_ranks (data_list):
rank = []
i,j = 0,1
while 1:
if i < len(data_list):
count_rank = 0
j = i + 1
while 2 and j < len(data_list):
if (data_list[i] == data_list[j]) :
count_rank += 1
j += 1
else:
break
if count_rank == 0:
rank.append(i+1)
i += 1
else:
avg_rank = float(2*i+1 + count_rank) / 2.0 #####
for k in range (count_rank):
rank.append(avg_rank)
i += count_rank
else:
break
rank_pc = []
for i in range (len(rank)):
#rank_pc.append(round(100*(rank[i] - 0.5)/ len(rank),2)) # 2 decimals
rank_pc.append(round(100*(rank[i] - 0.5)/ len(rank),0))
print "rank, datalist", rank, data_list, "\n"
return rank, rank_pc
"""
"""
Get ranks and percentage ranks dictionary for report
"""
def get_rank_dict(labs,rank, rank_pc, titlesAsRows = False):
myDict = {}
if titlesAsRows == True:
for i in range (len (labs)):
myDict[labs[i]] = [rank[i], rank_pc[i]]
else:
for i in range (len (labs)):
myDict["Row_" + str(i+1)] = [labs[i], rank[i], rank_pc[i]]
return myDict
"""
Rob Avg, Rob St Dev, U_AV, raw data histograms
"""
def interlab_test_pt1 (headers, myData, myDataTransposed ):
# get data
#headers, myData, myDataTransposed = get_data() # transposed == REVERSED INDICES
#print "\n\n\n", myData, myDataTransposed , "\n\n\n"
dataTransposed = deepcopy(myDataTransposed) ### data may be modified depending on extreme values - use for plots
data_list, robust_avg_x, robust_std_s = loop_algorithm_a(myDataTransposed[1]) # 'values' index
#print robust_avg_x, robust_std_s
# if uncertainties have been reported:
if uncertainties_exist(myDataTransposed[2]) == 1:
tempU = get_uncertainty_for_assigned_value(robust_std_s, len(myDataTransposed[0]), uncertainties = myDataTransposed[2]) # 'uncertainty' index
else:
tempU = get_uncertainty_for_assigned_value(robust_std_s, len(myDataTransposed[0]), uncertainties = [])
#print "\nUncertainty = ", tempU
#dataTransposed = kill_outliers(dataTransposed, robust_avg_x, robust_std_s) ## should we kill outliers?
# Optimal No. bins according to Scott's rule
test_bin = int ( (3.5*robust_std_s) / numpy.power(len(dataTransposed[1]), 0.3))
if test_bin >20:
test_bin = 20
#print "\nCalculated bins: ", test_bin
fig1a, fig1b = hist_plots(test_bin, dataTransposed, headers)
#print "\n\n FIGS WORKED \n\n"
"""
lab_bias = get_diff (myDataTransposed[0], tempX)
print "\nLab Bias: ", myDataTransposed[0], lab_bias
# lab_bias = x-X, tempS = rob std dev
signals = check_bias(lab_bias, tempS)
# list of signals, lab names, lab bias
print_labs_with_signals (signals, myDataTransposed[1], lab_bias)
lab_bias_percent = get_diff_percent (myDataTransposed[0], tempX)
print "\nLab Bias %%: ", lab_bias_percent
signals_percent = check_bias(lab_bias_percent, tempS)
print_labs_with_signals (signals, myDataTransposed[1], lab_bias_percent)
test_bin = 18 # normalise somehow
#test_bin = int ( (3.5*tempS) / numpy.power(len(dataTransposed[1]), 0.3))
# construct matrix with labels and values first
percent_for_hist = []
percent_for_hist.append(myDataTransposed[1])
percent_for_hist.append(lab_bias_percent)
hist_plots(test_bin, percent_for_hist, headers)
# return ranks
rank, rank_pc = get_ranks(myDataTransposed[1])
print "\nRanks: ", rank
print "\nRanks %%: ", rank_pc
"""
return robust_avg_x, robust_std_s, tempU, fig1a, fig1b
"""
Check if uncertainties exist
"""
def uncertainties_exist(u_list):
flag_U = 0
for i in range (len(u_list)):
if u_list[i] !=0:
flag_U = 1
break
return flag_U
"""
Replace uncertainties with u_AV if uncertainties do not exist
"""
def replace_uncertainties(u_list, u_AV):
for i in range (len(u_list)):
u_list[i] = u_AV
return u_list
"""
Get Diff & Diff %
"""
def get_diffs(data, ass_value):
#print data, ass_value
diff = []
diff_pc = []
for i in range (len(data)):
if ass_value == 0:
diff.append(round(data[i],2))
diff_pc.append(round(100*data[i],2))
else:
#diff.append(round((data[i] - ass_value)/ass_value,2))
diff.append(round((data[i] - ass_value),2))
diff_pc.append(round(100*(data[i] - ass_value)/ass_value,2))
return diff, diff_pc
"""
z-scores
"""
def z_scores (list, avg, std):
z_scorez = []
for i in range (len(list)):
z_scorez.append( round((float(list[i]) - avg )/ std, 2))
return z_scorez
"""
e-values
"""
def e_value (list, rob_avg, rob_std, u_AV, u_lab):
Uref = u_AV # should be matrix?
Eval95 = []
Eval99 = []
for i in range (len(list)):
Eval95.append(round((list[i] - rob_avg) / numpy.sqrt( numpy.power(2*u_lab[i],2) + numpy.power(2*Uref,2)),2))
Eval99.append(round((list[i] - rob_avg) / numpy.sqrt( numpy.power(3*u_lab[i],2) + numpy.power(3*Uref,2)),2))
return Eval95, Eval99
"""
zeta-scores
"""
def zeta_scores (list, rob_avg, rob_std, u_AV, u_lab):
Uref = u_AV # should be matrix?
zeta = []
for i in range (len(list)):
zeta.append(round((list[i] - rob_avg) / numpy.sqrt( numpy.power(u_lab[i],2) + numpy.power(Uref,2)),2))
return zeta
"""
z'
"""
def z_tonos (list, rob_avg, rob_std, u_AV):
z_ton = []
Ulab = u_AV # check uncertainty
for i in range (len(list)):
z_ton.append(round((list[i] - rob_avg) / numpy.sqrt( numpy.power(Ulab,2) + numpy.power(rob_std,2)),2))
return z_ton
"""
Ez scores
"""
def ez_scores(list, rob_avg, rob_std, u_AV, u_lab):
Uref = u_AV # should be matrix?
Ez_minus95 = []
Ez_plus95 = []
Ez_minus99 = []
Ez_plus99 = []
temp_U_override = 0.001
for i in range (len(list)):
if u_lab[i] !=0:
Ez_minus95.append(round((list[i] - (rob_avg - (2*u_AV)))/ (2*u_lab[i]),2))
Ez_plus95.append(round((list[i] - (rob_avg - (2*u_AV)))/ (2*u_lab[i]),2))
Ez_minus99.append(round((list[i] - (rob_avg - (3*u_AV)))/ (3*u_lab[i]),2))
Ez_plus99.append(round((list[i] - (rob_avg - (3*u_AV)))/ (3*u_lab[i]),2))
###print "!=0", list[i], rob_avg, u_AV, u_lab[i],(list[i] - (rob_avg - (2*u_AV)))/ (2*u_lab[i])
elif u_AV !=0:
Ez_minus95.append(round((list[i] - (rob_avg - (2*u_AV)))/ (2*u_AV),2)) #new 06042015
Ez_plus95.append(round((list[i] - (rob_avg - (2*u_AV)))/ (2*u_AV),2))
Ez_minus99.append(round((list[i] - (rob_avg - (3*u_AV)))/ (3*u_AV),2))
Ez_plus99.append(round((list[i] - (rob_avg - (3*u_AV)))/ (3*u_AV),2))
else:
#Ez_minus95.append((list[i] - (rob_avg - (2*u_AV)))/ (2*temp_U_override))
#Ez_plus95.append((list[i] - (rob_avg - (2*u_AV)))/ (2*temp_U_override))
#Ez_minus99.append((list[i] - (rob_avg - (3*u_AV)))/ (3*temp_U_override))
#Ez_plus99.append((list[i] - (rob_avg - (3*u_AV)))/ (3*temp_U_override))
Ez_minus95.append(-3)
Ez_plus95.append(3)
Ez_minus99.append(-3)
Ez_plus99.append(3)
###print "==0", list[i], rob_avg, u_AV, u_lab[i],(list[i] - (rob_avg - (2*u_AV)))/ (2*temp_U_override)
return Ez_minus95, Ez_plus95, Ez_minus99, Ez_plus99
"""
z-scores, e-values, etc.
"""
def interlab_test_pt2 (full_list, rob_avg, rob_std, u_AV):
labz = full_list[0]
valz = full_list[1]
u_lab = full_list[2]
z_sc = z_scores(valz, rob_avg, rob_std)
e_val95, e_val99 = e_value (valz, rob_avg, rob_std, u_AV, u_lab)
z_ton = z_tonos (valz, rob_avg, rob_std, u_AV)
zeta = zeta_scores (valz, rob_avg, rob_std, u_AV, u_lab)
diff, diff_pc = get_diffs(valz, rob_avg)
Ez_minus95, Ez_plus95, Ez_minus99, Ez_plus99 = ez_scores (valz, rob_avg, rob_std, u_AV, u_lab)
dict_z_sc = {}
dict_e_val95 = {}
dict_e_val99 = {}
dict_z_ton = {}
dict_zeta = {}
dict_ez_minus95 = {}
dict_ez_plus95 = {}
dict_ez_minus99 = {}
dict_ez_plus99 = {}
for i in range (len(labz)):
dict_z_sc[labz[i]] = z_sc[i]
dict_e_val95[labz[i]] = e_val95[i]
dict_e_val99[labz[i]] = e_val99[i]
dict_z_ton[labz[i]] = z_ton[i]
dict_zeta[labz[i]] = zeta[i]
dict_ez_minus95[labz[i]] = Ez_minus95[i]
dict_ez_plus95[labz[i]] = Ez_plus95[i]
dict_ez_minus99[labz[i]] = Ez_minus99[i]
dict_ez_plus99[labz[i]] = Ez_plus99[i]
return labz, z_sc, e_val95, e_val99, z_ton, zeta, Ez_minus95, Ez_plus95, Ez_minus99, Ez_plus99, dict_z_sc, dict_e_val95, dict_e_val99, dict_z_ton, dict_zeta, dict_ez_minus95, dict_ez_plus95, dict_ez_minus99, dict_ez_plus99
"""
individual z-scores
"""
def individual_z_scores (labz, z_scores):
namez = []
if isinstance(z_scores[0], list):
print "Currently do not test on multiple outcomes"
"""
for i in range len(z_scores):
namez.append([])
position_diff = 1/len(z_scores)
for i in range len(z_scores):
namez[i].append(...) ##
for i in range len(z_scores):
plt.bar( namez[i], z_scorez[i], width = 0.1, color='...') ##
"""
fig6_encoded = base64.b64encode("")
else:
for i in range (len(z_scores)): # labs
namez.append(i+1)
myFIGA6 = plt.figure()
plt.bar( namez, z_scores, width = 0.1, color='b')
tix = ["0"] + labz
plt.xticks(range(len(tix)),tix)
plt.xlabel("Laboratory")
plt.ylabel("z-scores")
plt.title('z-scores comparison per lab')
#ax = myFIGA6.add_subplot(111)
#ax.axes.get_xaxis().set_ticks([])
plt.tight_layout()
##plt.show() #HIDE show on production
sio = BytesIO()
myFIGA6.savefig(sio, dpi=300, format='png', bbox_inches="tight")
sio.seek(0)
fig6_encoded = base64.b64encode(sio.getvalue())
#sio = cStringIO.StringIO()
#myFIGA6.savefig(sio, dpi=300, format='png')
#saveas = pickle.dumps(sio.getvalue())
#fig6_encoded = base64.b64encode(saveas)
plt.close()
plt.close()
return fig6_encoded
"""
Egg plot coordinates
"""
def get_sigmas_exes(robust_average, robust_std_dev, chi_square, number_replicate_experiments):
#print robust_average, robust_std_dev, chi_square, number_replicate_experiments
x_min = robust_average - (robust_std_dev * numpy.sqrt(chi_square / number_replicate_experiments ))
x_max = robust_average + (robust_std_dev * numpy.sqrt(chi_square / number_replicate_experiments ))
y_neg = []
y_pos = []
xstep = (x_max-x_min)/1000 ## and below
xx = x_min
x_mat = []
for i in range (1,1000):
y_neg.append(robust_std_dev * numpy.exp( (-1.0/(numpy.sqrt(2*(number_replicate_experiments - 1)))) * \
numpy.sqrt(abs(chi_square - numpy.power(numpy.sqrt(number_replicate_experiments) * ((xx - robust_average)/robust_std_dev),2)))))
y_pos.append(robust_std_dev * numpy.exp( (1.0/(numpy.sqrt(2*(number_replicate_experiments - 1)))) * \
numpy.sqrt(abs(chi_square - numpy.power(numpy.sqrt(number_replicate_experiments) * ((xx - robust_average)/robust_std_dev),2)))))
xx += xstep
x_mat.append(xx)
# evaluate x
#print "\n\nEVAL", max(x_mat), "=?=", max(y_pos)
x_mat.append(x_max)
# evaluate y
y_neg.append(robust_std_dev * numpy.exp( (-1.0/(numpy.sqrt(2*(number_replicate_experiments - 1)))) * \
numpy.sqrt(abs(chi_square - numpy.power(numpy.sqrt(number_replicate_experiments) * ((x_max - robust_average)/robust_std_dev),2))))) #abs
y_pos.append(robust_std_dev * numpy.exp( (1.0/(numpy.sqrt(2*(number_replicate_experiments - 1)))) * \
numpy.sqrt(abs(chi_square - numpy.power(numpy.sqrt(number_replicate_experiments) * ((x_max - robust_average)/robust_std_dev),2))))) #abs
y_neg_mat = deepcopy(y_neg)
y_pos_mat = deepcopy(y_pos)
#print y_neg_mat[len(y_neg_mat)-1], "=?=", y_pos_mat[len(y_pos_mat)-1], "len = ", len(y_neg_mat)
return x_mat, y_neg_mat, y_pos_mat
"""
Algorithm S
"""
def algorithm_s(w, w_star, instances, replicates):
dof_t =[[0, 0], [1.645, 1.097], [1.517, 1.054], [1.444, 1.039], [1.395, 1.032], [1.359, 1.027],
[1.332, 1.024], [1.310, 1.021], [1.292, 1.019], [1.277, 1.018], [1.264, 1.017]]
if instances == "value":
dof = 1
elif instances == "std":
if replicates -1 >10:
dof = 10
else:
dof = replicates -1
else:
dof = 0 #initial
#print "Degrees of F = ", dof
# d-o-f_table [d-o-f][0:heta, 1:ksi]
psi = dof_t[dof][0] * w_star # heta * w_star
#print psi
w_new = deepcopy(w)
for i in range(len(w)):
if w[i] > psi:
w_new[i] = psi
else:
w_new[i] = w[i]
#print w_new
w_star_new = dof_t[dof][1] * numpy.sqrt( sum( numpy.power(w_new, 2) ) / len(w_new) )
converged = 0
#if w_star == w_star_new:
if w == w_new:
converged = 1
#print converged, w_star, w_star_new
return w_new, w_star_new, converged
"""
Loops Algorithm S until it converges
"""
def loop_algorithm_s (w, myType, replicates): # myType == "value" OR "std"
w_star = numpy.median(w)
while 1:
w, w_star, c = algorithm_s(w, w_star, myType, replicates)
if c == 0:
#print w
#print w_star
continue
else:
#print "converged !!"
break
#print w, w_star
return w, w_star, c