-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
200 lines (171 loc) · 8.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# -*- coding:utf-8 -*-
from __future__ import division
import warnings
warnings.filterwarnings("ignore")
from models import *
from utils.logger import *
from utils.utils import *
from utils.datasets import *
from utils.parse_config import *
from test import evaluate
from terminaltables import AsciiTable
import os
import sys
import time
import datetime
import argparse
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
import torch.optim as optim
from config.config import cfg
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=1000, help="number of epochs")
parser.add_argument("--batch_size", type=int, default=cfg.batch_size, help="size of each image batch")
parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step")
parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file")
parser.add_argument("--data_config", type=str, default="data/face/class.data", help="path to data config file")
parser.add_argument("--pretrained_weights", type=str, default="weights/yolov3.weights",
help="if specified starts from checkpoint model")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
parser.add_argument("--checkpoint_interval", type=int, default=10, help="interval between saving model weights")
parser.add_argument("--evaluation_interval", type=int, default=10, help="interval evaluations on validation set")
parser.add_argument("--compute_map", default=False, help="if True computes mAP every tenth batch")
parser.add_argument("--n_gpu", type=str, default=cfg.n_gpu, help="GPU IDS")
parser.add_argument("--multiscale_training", default=False, help="allow for multi-scale training")
opt = parser.parse_args()
print(opt)
logger = Logger("logs")
os.environ["CUDA_VISIBLE_DEVICES"] = opt.n_gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs("output", exist_ok=True)
os.makedirs("checkpoints", exist_ok=True)
# Get data configuration
data_config = parse_data_config(opt.data_config)
train_path = data_config["train"]
valid_path = data_config["valid"]
class_names = load_classes(data_config["names"])
# Initiate model
model = Darknet(opt.model_def).to(device) # default="config/yolov3.cfg"
model.apply(weights_init_normal)
# if specified we start from checkpoint
if opt.pretrained_weights:
if opt.pretrained_weights.endswith(".pth"):
model.load_state_dict(torch.load(opt.pretrained_weights))
else:
model.load_darknet_weights(opt.pretrained_weights)
model = nn.DataParallel(model)
# Get dataloader dataloader的大小就是一个batch里的图像向上取整之后的个数
# len(dataloader) = math.ceil(len(img_files)/batch_size)
# https://blog.csdn.net/yojayc/article/details/109340277 dataloader和batchsize的关系
dataset = ListDataset(train_path, img_size=opt.img_size, augment=True, multiscale=opt.multiscale_training)
# collate_fn:可以实现自定义的batch输出
# shuffle:设置为True的时候,每个epoch都会打乱数据集
# drop_last:告诉如何处理数据集长度除以batch_size的余下的数据。True就是抛弃,False就保留
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
pin_memory=True,
collate_fn=dataset.collate_fn,
)
optimizer = torch.optim.Adam(model.parameters())
metrics = [
"grid_size",
"loss",
"x",
"y",
"w",
"h",
"conf",
"cls",
"cls_acc",
"recall50",
"recall75",
"precision",
"conf_obj",
"conf_noobj",
]
for epoch in range(opt.epochs):
model.train()
start_time = time.time()
end_train = 0
for batch_i, (_, imgs, targets) in enumerate(dataloader):
# (_, imgs, targets) 具体返回的是: img_path, img, targets
if batch_i == len(dataloader)-1:
break
batches_done = len(dataloader) * epoch + batch_i
imgs = Variable(imgs.to(device))
targets = Variable(targets.to(device), requires_grad=False)
loss, outputs = model(imgs, targets)
loss.mean().backward()
if batches_done % opt.gradient_accumulations:
# Accumulates gradient before each step
optimizer.step()
optimizer.zero_grad()
if (batch_i+1) % 100 == 0:
log_str = "\n---- [Epoch %d/%d, Batch %d/%d] ----\n" % (epoch, opt.epochs, batch_i, len(dataloader))
metric_table = [["Metrics", *[f"YOLO Layer {i}" for i in range(len(model.module.yolo_layers))]]]
#Log metrics at each YOLO layer
for i, metric in enumerate(metrics):
formats = {m: "%.6f" for m in metrics}
formats["grid_size"] = "%2d"
formats["cls_acc"] = "%.2f%%"
row_metrics = [formats[metric] % yolo.metrics.get(metric, 0) for yolo in model.module.yolo_layers]
metric_table += [[metric, *row_metrics]]
# Tensorboard logging
tensorboard_log = []
for j, yolo in enumerate(model.module.yolo_layers):
#print(yolo.metrics.items())
for name, metric in yolo.metrics.items():
if name != "grid_size":
tensorboard_log += [(f"{name}_{j+1}", metric)]
tensorboard_log += [("loss", loss.mean().item())]
logger.list_of_scalars_summary(tensorboard_log, batches_done)
log_str += AsciiTable(metric_table).table
log_str += f"\nTotal loss {loss.mean().item()}"
# Determine approximate time left for epoch
epoch_batches_left = len(dataloader) - (batch_i + 1)
time_left = datetime.timedelta(seconds=epoch_batches_left * (time.time() - start_time) / (batch_i + 1))
log_str += f"\n---- ETA {time_left}"
print(log_str)
model.module.seen += imgs.size(0)
#print('Epoch:{}, training time (m): {}, validation time (m): {}'.format(epoch, (end_train-start_time)/60, 0))
end_train = time.time()
if epoch % opt.evaluation_interval == 0:
print("\n---- Evaluating Model ----")
# Evaluate the model on the validation set
precision, recall, AP, f1, ap_class = evaluate(
model,
path=valid_path,
iou_thres=0.5,
conf_thres=0.01,
nms_thres=0.5,
img_size=opt.img_size,
batch_size=4,
)
evaluation_metrics = [
("val_precision", precision.mean()),
("val_recall", recall.mean()),
("val_mAP", AP.mean()),
("val_f1", f1.mean()),
]
logger.list_of_scalars_summary(evaluation_metrics, epoch)
# Print class APs and mAP
ap_table = [["Index", "Class name", "AP"]]
for i, c in enumerate(ap_class):
ap_table += [[c, class_names[c], "%.5f" % AP[i]]]
print(AsciiTable(ap_table).table)
print(f"---- mAP {AP.mean()}")
end_val = time.time()
print('time statistics')
print('Epoch:{}, training time (m): {}, validation time (m): {}'.format(epoch, (end_train-start_time)/60, (end_val-end_train)/60))
if epoch % opt.checkpoint_interval == 0:
torch.save(model.state_dict(), f"checkpoints/yolov3_ckpt_%d.pth" % epoch)