-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrandom_regular_propagation.py
154 lines (118 loc) · 4.76 KB
/
random_regular_propagation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
'''
This script tests Dandelion spreading on random regular graphs.
There are several variants, including quasi-regular constructions.
'''
from config_random_regular import *
import networkx as nx
import random
import numpy as np
import collections
import math
import scipy.io
import sys
from utils import plot_results, get_num_honest_nodes, plot_graph
def run_sims(G, num_nodes, verbose, sim_type, sim_params):
''' Run simulation according to the settings specified in sim_settings'''
return sim_type(G, num_honest_nodes, verbose, **sim_params)
def generate_graph(n, p, d, verbose, graph_type, graph_params):
''' Generate a graph with corresponding params
Input params:
n number of nodes
p fraction of spies
d out-degree of random-regular anonymity graph
verbose print extra debug messages
args other args for different classes of graphs, including the type of graph'''
return graph_type(n, p, d, verbose, **graph_params)
if __name__=='__main__':
num_sims = len(sim_settings)
# Initialize precision, recall lists
p_means = [[] for i in range(num_sims)]
p_stds = [[] for i in range(num_sims)]
r_means = [[] for i in range(num_sims)]
r_stds = [[] for i in range(num_sims)]
# ----- Number of choices for each connection -----#
if len(sys.argv) > 1:
q = float(sys.argv[1])
else:
q = 0.0
print('q is', q)
if len(sys.argv) > 2:
semi_honest = bool(sys.argv[2])
else:
semi_honest = False
print('semi_honest:', semi_honest)
for d in ds:
print('d is ', d)
for p in ps:
print('p is', p)
# Collect the precision and recall per graph per trial here
graph_precision = [0 for i in range(num_sims)]
graph_recall = [0 for i in range(num_sims)]
graph_precision_std = [0 for i in range(num_sims)]
graph_recall_std = [0 for i in range(num_sims)]
for i in range(graph_trials):
if (i%5 == 0):
print('Trial ', i, ' of ', graph_trials)
# Generate the graph
# gen = sim_graph[1](n, p, d, verbose) # d-regular graph
gen = generate_graph(n, p, d, verbose, sim_graph, sim_graph_params)
# if semi_honest:
# gen = QuasiRegGraphGen(n, p, BTC_GRAPH_OUT_DEGREE, verbose, d_anon = 2) # quasi d-regular w spies
# else:
# gen = QuasiRegGraphGenSpiesOutbound(n, p, d, verbose) # quasi d-regular w spies, no degree-checking, spies connect to all
# gen = QuasiRegGraphGenSpies(n, p, k, d, verbose) # quasi d-regular with degree-checking, spies lie about degree
# gen = DataGraphGen('data/bitcoin.gexf', p, verbose) # Bitcoin graph
# gen = QuasiRegThreshGraphGen(n, p, d, k, verbose) # quasi d-regular
# gen = CompleteGraphGen(n, p, verbose) # complete graph
G = gen.G
A = gen.A
# print 'G loaded', nx.number_of_nodes(G), ' nodes'
num_honest_nodes = get_num_honest_nodes(G)
# Corner cases
if (num_honest_nodes == n) or (num_honest_nodes == 0):
if (num_honest_nodes == n) or (num_honest_nodes == 0):
graph_precision += 0.0
graph_recall += 0.0
continue
# print G.edges()
for j in range(path_trials):
# run the simulations
sims = []
for sim_name, parameters in sim_settings.items():
sims.append(run_sims(G, num_honest_nodes, verbose, parameters[0],
parameters[1]))
for idx, sim in enumerate(sims):
graph_precision[idx] += sim.precision
graph_recall[idx] += sim.recall
if verbose:
# plot the graph
plot_graph(G)
for idx, sim in enumerate(sims):
graph_precision[idx] = graph_precision[idx] / path_trials / graph_trials
graph_precision_std[idx] = np.sqrt(graph_precision[idx] * (1.0-graph_precision[idx]) / graph_trials / path_trials)
graph_recall[idx] = graph_recall[idx] / path_trials / graph_trials
graph_recall_std[idx] = np.sqrt(graph_recall[idx] * (1-graph_recall[idx]) / graph_trials / path_trials)
# print('Graph precision: ', graph_precision[idx])
# print('Graph recall: ', graph_recall[idx])
p_means[idx].append(graph_precision[idx])
p_stds[idx].append(graph_precision_std[idx])
r_means[idx].append(graph_recall[idx])
r_stds[idx].append(graph_recall_std[idx])
# print 'saved to file', filename
settings_list = np.zeros((num_sims,), dtype=object)
settings_list[:] = [item for item in list(sim_settings.keys())]
scipy.io.savemat('sim_data.mat',{'p_means':np.array(p_means),
'r_means':np.array(r_means),
'p_stds':np.array(p_stds),
'r_stds':np.array(r_stds),
'ps':np.array(ps),
'num_nodes':n,
'graph_type':sim_graph.__name__,
'sim_settings':settings_list})
means = np.array(r_means)
stds = np.array(r_stds)
ps = np.array(ps)
if any(legend):
plot_results(means, stds, ps, legend)
else:
plot_results(means, stds, ps, sim_settings.keys())