-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
119 lines (94 loc) · 3.17 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# utils.py
import argparse
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
# Spreading mechanism constants
TRICKLE = 0
DIFFUSION = 1
# Estimator Constants
FIRST_SPY = 0
MAX_LIKELIHOOD = 1
LOCAL_OPT = 2
CENTRALITY = 3
def write_results(results_names, results_data, param_types, params, run_num = None):
''' Writes a file containing the parameters, then prints each
result name with the corresponding data '''
filename = 'results/results' + "_".join([str(i) for i in params[0]])
if not (run_num is None):
filename += '_run' + str(run_num)
f = open(filename, 'w')
for (param_type, param) in zip(param_types, params):
f.write(param_type)
f.write(': ')
for item in param:
f.write("%s " % item)
f.write('\n')
for (result_type, result) in zip(results_names, results_data):
f.write(result_type)
f.write('\n')
for item in result:
f.write("%s " % item)
f.write('\n')
f.close()
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("-r", "--run", type=int,
help="changes the filename of saved data")
parser.add_argument("-v", "--verbose", help="increase output verbosity",
action="store_true")
parser.add_argument("-w", "--write", help="writes the results to file",
action="store_true")
parser.add_argument("-t","--trials", type=int, help="number of trials",
default=1)
parser.add_argument("-s","--spreading", type=int, help="Which spreading protocol to use (0)trickle, (1)diffusion",
default=0)
parser.add_argument("-e","--estimator", dest='estimators',default=[], type=int,
help="Which estimator to use (0)first-spy, (1)ML, (2)local diffusion", action='append')
parser.add_argument("--measure_time", help="measure runtime?",
action="store_true")
args = parser.parse_args()
if not (args.run is None):
args.write = True
print('---Selected Parameters---')
print('verbose: ', args.verbose)
print('write to file: ', args.write)
print('spreading mechanism: ', args.spreading)
print('estimators: ', args.estimators)
print('run: ', args.run)
print('num trials: ', args.trials, '\n')
return args
def plot_results(means, stds, ps, labels=None):
# Create the plot
for idx in range(means.shape[0]):
print("labels", labels)
if any(labels):
plt.errorbar(ps, means[idx], yerr=stds[idx], fmt='o-', label=list(labels)[idx])
else:
plt.errorbar(ps, means[idx], yerr=stds[idx], fmt='o-')
# Customize the plot
# plt.title("Plot of p_means with Error Bars")
plt.xlabel("Fraction of Spies (p)")
plt.ylabel("Mean Precision")
plt.grid(True)
if any(labels):
plt.legend()
plt.show()
def get_num_honest_nodes(G):
# List of all spies
spies = nx.get_node_attributes(G,'spy')
num_spies = list(spies.values()).count(True)
return (G.number_of_nodes() - num_spies)
def plot_graph(G):
pos = nx.circular_layout(G)
labels = {}
for n in G.nodes():
labels[n] = str(n)
spies = nx.get_node_attributes(G,'spy')
print('num spies', spies)
val_map = {True: 'r',
False: 'b'}
values = [val_map[i] for i in list(spies.values())]
nx.draw(G, pos, node_color = values)
nx.draw_networkx_labels(G, pos, labels, font_size = 16)
plt.show()