Skip to content

Commit 13d5770

Browse files
authored
Port fixedpoint header to WebAssembly SIMD (#202)
1 parent fda83bd commit 13d5770

File tree

3 files changed

+388
-0
lines changed

3 files changed

+388
-0
lines changed

fixedpoint/fixedpoint.h

+2
Original file line numberDiff line numberDiff line change
@@ -907,6 +907,8 @@ FixedPoint<tRawType, 0> logistic(FixedPoint<tRawType, tIntegerBits> a) {
907907
#include "./fixedpoint_sse.h"
908908
#elif defined(GEMMLOWP_MSA)
909909
#include "./fixedpoint_msa.h"
910+
#elif defined(GEMMLOWP_WASMSIMD)
911+
#include "./fixedpoint_wasmsimd.h"
910912
#endif
911913

912914
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_H_

fixedpoint/fixedpoint_wasmsimd.h

+381
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,381 @@
1+
// Copyright 2020 Google Inc. All Rights Reserved.
2+
//
3+
// Licensed under the Apache License, Version 2.0 (the "License");
4+
// you may not use this file except in compliance with the License.
5+
// You may obtain a copy of the License at
6+
//
7+
// http://www.apache.org/licenses/LICENSE-2.0
8+
//
9+
// Unless required by applicable law or agreed to in writing, software
10+
// distributed under the License is distributed on an "AS IS" BASIS,
11+
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
// See the License for the specific language governing permissions and
13+
// limitations under the License.
14+
15+
// fixedpoint_wasmsimd.h: optimized WAsm SIMD specializations of the templates
16+
// in fixedpoint.h.
17+
18+
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_
19+
#define GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_
20+
21+
#include <wasm_simd128.h>
22+
23+
namespace gemmlowp {
24+
25+
// WAsm SIMD intrinsics are not typed: there is a single v128_t vector
26+
// type that does not distinguish between "int32x4" and "int16x8" use
27+
// cases, unlike the NEON equivalents. Because we had initially focused
28+
// on int32x4, we did not pay attention and specialized these fixedpoint
29+
// templates directly for v128_t hardcoding the int32x4 semantics,
30+
// not leaving room for int16x8 semantics. Amending that by adding a separate
31+
// data type, int16x8_v128_t, that wraps v128_t while being a separate
32+
// type.
33+
struct int16x8_v128_t {
34+
v128_t v;
35+
};
36+
37+
// Keep int16x8_v128_t trivially constructible/destructible and provide
38+
// easily optimized helper function.
39+
inline int16x8_v128_t to_int16x8_v128_t(v128_t w) {
40+
int16x8_v128_t r;
41+
r.v = w;
42+
return r;
43+
}
44+
45+
template <>
46+
struct FixedPointRawTypeTraits<v128_t> {
47+
typedef std::int32_t ScalarRawType;
48+
static constexpr int kLanes = 4;
49+
};
50+
51+
template <>
52+
struct FixedPointRawTypeTraits<int16x8_v128_t> {
53+
typedef std::int16_t ScalarRawType;
54+
static constexpr int kLanes = 8;
55+
};
56+
57+
template <>
58+
inline v128_t BitAnd(v128_t a, v128_t b) {
59+
return wasm_v128_and(a, b);
60+
}
61+
62+
template <>
63+
inline int16x8_v128_t BitAnd(int16x8_v128_t a, int16x8_v128_t b) {
64+
return to_int16x8_v128_t(wasm_v128_and(a.v, b.v));
65+
}
66+
67+
template <>
68+
inline v128_t BitOr(v128_t a, v128_t b) {
69+
return wasm_v128_or(a, b);
70+
}
71+
72+
template <>
73+
inline int16x8_v128_t BitOr(int16x8_v128_t a, int16x8_v128_t b) {
74+
return to_int16x8_v128_t(wasm_v128_or(a.v, b.v));
75+
}
76+
77+
template <>
78+
inline v128_t BitXor(v128_t a, v128_t b) {
79+
return wasm_v128_xor(a, b);
80+
}
81+
82+
template <>
83+
inline int16x8_v128_t BitXor(int16x8_v128_t a, int16x8_v128_t b) {
84+
return to_int16x8_v128_t(wasm_v128_xor(a.v, b.v));
85+
}
86+
87+
template <>
88+
inline v128_t BitNot(v128_t a) {
89+
return wasm_v128_not(a);
90+
}
91+
92+
template <>
93+
inline int16x8_v128_t BitNot(int16x8_v128_t a) {
94+
return to_int16x8_v128_t(wasm_v128_not(a.v));
95+
}
96+
97+
template <>
98+
inline v128_t Add(v128_t a, v128_t b) {
99+
return wasm_i32x4_add(a, b);
100+
}
101+
102+
template <>
103+
inline int16x8_v128_t Add(int16x8_v128_t a, int16x8_v128_t b) {
104+
return to_int16x8_v128_t(wasm_i16x8_add(a.v, b.v));
105+
}
106+
107+
template <>
108+
inline v128_t Mul(v128_t a, v128_t b) {
109+
return wasm_i32x4_mul(a, b);
110+
}
111+
112+
template <>
113+
inline int16x8_v128_t Mul(int16x8_v128_t a, int16x8_v128_t b) {
114+
return to_int16x8_v128_t(wasm_i16x8_mul(a.v, b.v));
115+
}
116+
117+
template <>
118+
inline v128_t Sub(v128_t a, v128_t b) {
119+
return wasm_i32x4_sub(a, b);
120+
}
121+
122+
template <>
123+
inline int16x8_v128_t Sub(int16x8_v128_t a, int16x8_v128_t b) {
124+
return to_int16x8_v128_t(wasm_i16x8_sub(a.v, b.v));
125+
}
126+
127+
template <>
128+
inline v128_t Neg(v128_t a) {
129+
return wasm_i32x4_neg(a);
130+
}
131+
132+
template <>
133+
inline int16x8_v128_t Neg(int16x8_v128_t a) {
134+
return to_int16x8_v128_t(wasm_i16x8_neg(a.v));
135+
}
136+
137+
template <>
138+
inline v128_t ShiftLeft(v128_t a, int offset) {
139+
return wasm_i32x4_shl(a, offset);
140+
}
141+
142+
template <>
143+
inline int16x8_v128_t ShiftLeft(int16x8_v128_t a, int offset) {
144+
return to_int16x8_v128_t(wasm_i16x8_shl(a.v, offset));
145+
}
146+
147+
template <>
148+
inline v128_t ShiftRight(v128_t a, int offset) {
149+
return wasm_i32x4_shr(a, offset);
150+
}
151+
152+
template <>
153+
inline int16x8_v128_t ShiftRight(int16x8_v128_t a, int offset) {
154+
return to_int16x8_v128_t(wasm_i16x8_shr(a.v, offset));
155+
}
156+
157+
template <>
158+
inline v128_t SelectUsingMask(v128_t if_mask, v128_t then_val,
159+
v128_t else_val) {
160+
return wasm_v128_bitselect(then_val, else_val, if_mask);
161+
}
162+
163+
template <>
164+
inline int16x8_v128_t SelectUsingMask(int16x8_v128_t if_mask,
165+
int16x8_v128_t then_val,
166+
int16x8_v128_t else_val) {
167+
return to_int16x8_v128_t(
168+
wasm_v128_bitselect(then_val.v, else_val.v, if_mask.v));
169+
}
170+
171+
template <>
172+
inline v128_t MaskIfEqual(v128_t a, v128_t b) {
173+
return wasm_i32x4_eq(a, b);
174+
}
175+
176+
template <>
177+
inline int16x8_v128_t MaskIfEqual(int16x8_v128_t a, int16x8_v128_t b) {
178+
return to_int16x8_v128_t(wasm_i16x8_eq(a.v, b.v));
179+
}
180+
181+
template <>
182+
inline v128_t MaskIfNotEqual(v128_t a, v128_t b) {
183+
return wasm_i32x4_ne(a, b);
184+
}
185+
186+
template <>
187+
inline int16x8_v128_t MaskIfNotEqual(int16x8_v128_t a, int16x8_v128_t b) {
188+
return to_int16x8_v128_t(wasm_i16x8_ne(a.v, b.v));
189+
}
190+
191+
template <>
192+
inline v128_t MaskIfZero(v128_t a) {
193+
return MaskIfEqual(a, wasm_i32x4_const(0, 0, 0, 0));
194+
}
195+
196+
template <>
197+
inline int16x8_v128_t MaskIfZero(int16x8_v128_t a) {
198+
return MaskIfEqual(
199+
a, to_int16x8_v128_t(wasm_i16x8_const(0, 0, 0, 0, 0, 0, 0, 0)));
200+
}
201+
202+
template <>
203+
inline v128_t MaskIfNonZero(v128_t a) {
204+
return MaskIfNotEqual(a, wasm_i32x4_const(0, 0, 0, 0));
205+
}
206+
207+
template <>
208+
inline int16x8_v128_t MaskIfNonZero(int16x8_v128_t a) {
209+
return MaskIfNotEqual(
210+
a, to_int16x8_v128_t(wasm_i16x8_const(0, 0, 0, 0, 0, 0, 0, 0)));
211+
}
212+
213+
template <>
214+
inline v128_t MaskIfGreaterThan(v128_t a, v128_t b) {
215+
return wasm_i32x4_gt(a, b);
216+
}
217+
218+
template <>
219+
inline int16x8_v128_t MaskIfGreaterThan(int16x8_v128_t a, int16x8_v128_t b) {
220+
return to_int16x8_v128_t(wasm_i16x8_gt(a.v, b.v));
221+
}
222+
223+
template <>
224+
inline v128_t MaskIfLessThan(v128_t a, v128_t b) {
225+
return wasm_i32x4_lt(a, b);
226+
}
227+
228+
template <>
229+
inline int16x8_v128_t MaskIfLessThan(int16x8_v128_t a, int16x8_v128_t b) {
230+
return to_int16x8_v128_t(wasm_i16x8_lt(a.v, b.v));
231+
}
232+
233+
template <>
234+
inline v128_t MaskIfGreaterThanOrEqual(v128_t a, v128_t b) {
235+
return wasm_i32x4_ge(a, b);
236+
}
237+
238+
template <>
239+
inline int16x8_v128_t MaskIfGreaterThanOrEqual(int16x8_v128_t a,
240+
int16x8_v128_t b) {
241+
return to_int16x8_v128_t(wasm_i16x8_ge(a.v, b.v));
242+
}
243+
244+
template <>
245+
inline v128_t MaskIfLessThanOrEqual(v128_t a, v128_t b) {
246+
return wasm_i32x4_le(a, b);
247+
}
248+
249+
template <>
250+
inline int16x8_v128_t MaskIfLessThanOrEqual(int16x8_v128_t a,
251+
int16x8_v128_t b) {
252+
return to_int16x8_v128_t(wasm_i16x8_le(a.v, b.v));
253+
}
254+
255+
/* Assumptions:
256+
- All and Any are used on masks.
257+
- masks are all_ones for true lanes, all_zeroes otherwise.
258+
Hence, All means all 128bits set, and Any means any bit set.
259+
*/
260+
261+
template <>
262+
inline bool All(v128_t a) {
263+
return wasm_i32x4_all_true(a);
264+
}
265+
266+
template <>
267+
inline bool All(int16x8_v128_t a) {
268+
return wasm_i16x8_all_true(a.v);
269+
}
270+
271+
template <>
272+
inline bool Any(v128_t a) {
273+
return wasm_i32x4_any_true(a);
274+
}
275+
276+
template <>
277+
inline bool Any(int16x8_v128_t a) {
278+
return wasm_i16x8_any_true(a.v);
279+
}
280+
281+
template <>
282+
inline v128_t RoundingHalfSum(v128_t a, v128_t b) {
283+
// We divide the inputs before the add to avoid the overflow and costly test.
284+
const v128_t one = wasm_i32x4_const(1, 1, 1, 1);
285+
const v128_t sign_bit_mask =
286+
wasm_i32x4_const(0x80000000, 0x80000000, 0x80000000, 0x80000000);
287+
const v128_t sum = Add(a, b);
288+
const v128_t rounded_half_sum = ShiftRight(Add(sum, one), 1);
289+
const v128_t overflow =
290+
BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)),
291+
sign_bit_mask);
292+
const v128_t result = BitXor(rounded_half_sum, overflow);
293+
return result;
294+
}
295+
296+
template <>
297+
inline int16x8_v128_t RoundingHalfSum(int16x8_v128_t a, int16x8_v128_t b) {
298+
// Idea: go to unsigned to use wasm_u16x8_avgr,
299+
// borrowed from Intel's arm_neon_sse.h header.
300+
const v128_t constant_neg_32768 = wasm_i16x8_const(
301+
-32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768);
302+
const v128_t a_unsigned = wasm_v128_xor(a.v, constant_neg_32768);
303+
const v128_t b_unsigned = wasm_v128_xor(b.v, constant_neg_32768);
304+
const v128_t avg_unsigned = wasm_u16x8_avgr(a_unsigned, b_unsigned);
305+
const v128_t avg = wasm_v128_xor(avg_unsigned, constant_neg_32768);
306+
return to_int16x8_v128_t(avg);
307+
}
308+
309+
template <>
310+
inline v128_t SaturatingRoundingDoublingHighMul(v128_t a, v128_t b) {
311+
// TODO: switch to extended multiplication once implemented in the toolchain
312+
const v128_t a_sign = wasm_i32x4_shr(a, 31);
313+
const v128_t b_sign = wasm_i32x4_shr(b, 31);
314+
315+
const v128_t a_ext_lo = wasm_v32x4_shuffle(a, a_sign, 0, 4, 1, 5);
316+
const v128_t a_ext_hi = wasm_v32x4_shuffle(a, a_sign, 2, 6, 3, 7);
317+
const v128_t b_ext_lo = wasm_v32x4_shuffle(b, b_sign, 0, 4, 1, 5);
318+
const v128_t b_ext_hi = wasm_v32x4_shuffle(b, b_sign, 2, 6, 3, 7);
319+
320+
const v128_t ab_lo = wasm_i64x2_mul(a_ext_lo, b_ext_lo);
321+
const v128_t ab_hi = wasm_i64x2_mul(a_ext_hi, b_ext_hi);
322+
323+
const v128_t nudge_2x =
324+
wasm_i64x2_const(INT64_C(0x80000000), INT64_C(0x80000000));
325+
const v128_t ab_lo_2x = wasm_i64x2_add(ab_lo, ab_lo);
326+
const v128_t ab_hi_2x = wasm_i64x2_add(ab_hi, ab_hi);
327+
328+
const v128_t ab_lo_rounded_2x = wasm_i64x2_add(ab_lo_2x, nudge_2x);
329+
const v128_t ab_hi_rounded_2x = wasm_i64x2_add(ab_hi_2x, nudge_2x);
330+
331+
const v128_t prod =
332+
wasm_v32x4_shuffle(ab_lo_rounded_2x, ab_hi_rounded_2x, 1, 3, 5, 7);
333+
334+
// Saturation only happen if a == b == INT_MIN, and this is the only case
335+
// where prod == INT_MIN (0x80000000) instead of INT_MAX (0x7FFFFFFF).
336+
const v128_t min = wasm_i32x4_const(INT32_C(0x80000000), INT32_C(0x80000000),
337+
INT32_C(0x80000000), INT32_C(0x80000000));
338+
339+
return wasm_v128_xor(prod, wasm_i32x4_eq(prod, min));
340+
}
341+
342+
template <>
343+
inline int16x8_v128_t SaturatingRoundingDoublingHighMul(int16x8_v128_t a,
344+
int16x8_v128_t b) {
345+
#if 0
346+
// TODO: enable if https://github.com/WebAssembly/simd/pull/365 is accepted
347+
return to_int16x8_v128_t(__builtin_wasm_q15mulr_saturate_s_i16x8(a.v, b.v));
348+
#else
349+
// TODO: switch to extended multiplication once implemented in the toolchain
350+
v128_t lo = wasm_i32x4_mul(wasm_i32x4_widen_low_i16x8(a.v),
351+
wasm_i32x4_widen_low_i16x8(b.v));
352+
v128_t hi = wasm_i32x4_mul(wasm_i32x4_widen_high_i16x8(a.v),
353+
wasm_i32x4_widen_high_i16x8(b.v));
354+
const v128_t inc = wasm_i32x4_const(0x4000, 0x4000, 0x4000, 0x4000);
355+
lo = wasm_i32x4_add(lo, inc);
356+
hi = wasm_i32x4_add(hi, inc);
357+
lo = wasm_i32x4_shr(lo, 15);
358+
hi = wasm_i32x4_shr(hi, 15);
359+
return to_int16x8_v128_t(wasm_i16x8_narrow_i32x4(lo, hi));
360+
#endif
361+
}
362+
363+
template <>
364+
inline v128_t Dup<v128_t>(std::int32_t x) {
365+
return wasm_i32x4_splat(x);
366+
}
367+
368+
template <>
369+
inline int16x8_v128_t Dup<int16x8_v128_t>(std::int16_t x) {
370+
return to_int16x8_v128_t(wasm_i16x8_splat(x));
371+
}
372+
373+
// So far this is only needed for int16.
374+
template <>
375+
inline int16x8_v128_t SaturatingAdd(int16x8_v128_t a, int16x8_v128_t b) {
376+
return to_int16x8_v128_t(wasm_i16x8_add_saturate(a.v, b.v));
377+
}
378+
379+
} // end namespace gemmlowp
380+
381+
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_

0 commit comments

Comments
 (0)