|
| 1 | +// Copyright 2020 Google Inc. All Rights Reserved. |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +// you may not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +// fixedpoint_wasmsimd.h: optimized WAsm SIMD specializations of the templates |
| 16 | +// in fixedpoint.h. |
| 17 | + |
| 18 | +#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_ |
| 19 | +#define GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_ |
| 20 | + |
| 21 | +#include <wasm_simd128.h> |
| 22 | + |
| 23 | +namespace gemmlowp { |
| 24 | + |
| 25 | +// WAsm SIMD intrinsics are not typed: there is a single v128_t vector |
| 26 | +// type that does not distinguish between "int32x4" and "int16x8" use |
| 27 | +// cases, unlike the NEON equivalents. Because we had initially focused |
| 28 | +// on int32x4, we did not pay attention and specialized these fixedpoint |
| 29 | +// templates directly for v128_t hardcoding the int32x4 semantics, |
| 30 | +// not leaving room for int16x8 semantics. Amending that by adding a separate |
| 31 | +// data type, int16x8_v128_t, that wraps v128_t while being a separate |
| 32 | +// type. |
| 33 | +struct int16x8_v128_t { |
| 34 | + v128_t v; |
| 35 | +}; |
| 36 | + |
| 37 | +// Keep int16x8_v128_t trivially constructible/destructible and provide |
| 38 | +// easily optimized helper function. |
| 39 | +inline int16x8_v128_t to_int16x8_v128_t(v128_t w) { |
| 40 | + int16x8_v128_t r; |
| 41 | + r.v = w; |
| 42 | + return r; |
| 43 | +} |
| 44 | + |
| 45 | +template <> |
| 46 | +struct FixedPointRawTypeTraits<v128_t> { |
| 47 | + typedef std::int32_t ScalarRawType; |
| 48 | + static constexpr int kLanes = 4; |
| 49 | +}; |
| 50 | + |
| 51 | +template <> |
| 52 | +struct FixedPointRawTypeTraits<int16x8_v128_t> { |
| 53 | + typedef std::int16_t ScalarRawType; |
| 54 | + static constexpr int kLanes = 8; |
| 55 | +}; |
| 56 | + |
| 57 | +template <> |
| 58 | +inline v128_t BitAnd(v128_t a, v128_t b) { |
| 59 | + return wasm_v128_and(a, b); |
| 60 | +} |
| 61 | + |
| 62 | +template <> |
| 63 | +inline int16x8_v128_t BitAnd(int16x8_v128_t a, int16x8_v128_t b) { |
| 64 | + return to_int16x8_v128_t(wasm_v128_and(a.v, b.v)); |
| 65 | +} |
| 66 | + |
| 67 | +template <> |
| 68 | +inline v128_t BitOr(v128_t a, v128_t b) { |
| 69 | + return wasm_v128_or(a, b); |
| 70 | +} |
| 71 | + |
| 72 | +template <> |
| 73 | +inline int16x8_v128_t BitOr(int16x8_v128_t a, int16x8_v128_t b) { |
| 74 | + return to_int16x8_v128_t(wasm_v128_or(a.v, b.v)); |
| 75 | +} |
| 76 | + |
| 77 | +template <> |
| 78 | +inline v128_t BitXor(v128_t a, v128_t b) { |
| 79 | + return wasm_v128_xor(a, b); |
| 80 | +} |
| 81 | + |
| 82 | +template <> |
| 83 | +inline int16x8_v128_t BitXor(int16x8_v128_t a, int16x8_v128_t b) { |
| 84 | + return to_int16x8_v128_t(wasm_v128_xor(a.v, b.v)); |
| 85 | +} |
| 86 | + |
| 87 | +template <> |
| 88 | +inline v128_t BitNot(v128_t a) { |
| 89 | + return wasm_v128_not(a); |
| 90 | +} |
| 91 | + |
| 92 | +template <> |
| 93 | +inline int16x8_v128_t BitNot(int16x8_v128_t a) { |
| 94 | + return to_int16x8_v128_t(wasm_v128_not(a.v)); |
| 95 | +} |
| 96 | + |
| 97 | +template <> |
| 98 | +inline v128_t Add(v128_t a, v128_t b) { |
| 99 | + return wasm_i32x4_add(a, b); |
| 100 | +} |
| 101 | + |
| 102 | +template <> |
| 103 | +inline int16x8_v128_t Add(int16x8_v128_t a, int16x8_v128_t b) { |
| 104 | + return to_int16x8_v128_t(wasm_i16x8_add(a.v, b.v)); |
| 105 | +} |
| 106 | + |
| 107 | +template <> |
| 108 | +inline v128_t Mul(v128_t a, v128_t b) { |
| 109 | + return wasm_i32x4_mul(a, b); |
| 110 | +} |
| 111 | + |
| 112 | +template <> |
| 113 | +inline int16x8_v128_t Mul(int16x8_v128_t a, int16x8_v128_t b) { |
| 114 | + return to_int16x8_v128_t(wasm_i16x8_mul(a.v, b.v)); |
| 115 | +} |
| 116 | + |
| 117 | +template <> |
| 118 | +inline v128_t Sub(v128_t a, v128_t b) { |
| 119 | + return wasm_i32x4_sub(a, b); |
| 120 | +} |
| 121 | + |
| 122 | +template <> |
| 123 | +inline int16x8_v128_t Sub(int16x8_v128_t a, int16x8_v128_t b) { |
| 124 | + return to_int16x8_v128_t(wasm_i16x8_sub(a.v, b.v)); |
| 125 | +} |
| 126 | + |
| 127 | +template <> |
| 128 | +inline v128_t Neg(v128_t a) { |
| 129 | + return wasm_i32x4_neg(a); |
| 130 | +} |
| 131 | + |
| 132 | +template <> |
| 133 | +inline int16x8_v128_t Neg(int16x8_v128_t a) { |
| 134 | + return to_int16x8_v128_t(wasm_i16x8_neg(a.v)); |
| 135 | +} |
| 136 | + |
| 137 | +template <> |
| 138 | +inline v128_t ShiftLeft(v128_t a, int offset) { |
| 139 | + return wasm_i32x4_shl(a, offset); |
| 140 | +} |
| 141 | + |
| 142 | +template <> |
| 143 | +inline int16x8_v128_t ShiftLeft(int16x8_v128_t a, int offset) { |
| 144 | + return to_int16x8_v128_t(wasm_i16x8_shl(a.v, offset)); |
| 145 | +} |
| 146 | + |
| 147 | +template <> |
| 148 | +inline v128_t ShiftRight(v128_t a, int offset) { |
| 149 | + return wasm_i32x4_shr(a, offset); |
| 150 | +} |
| 151 | + |
| 152 | +template <> |
| 153 | +inline int16x8_v128_t ShiftRight(int16x8_v128_t a, int offset) { |
| 154 | + return to_int16x8_v128_t(wasm_i16x8_shr(a.v, offset)); |
| 155 | +} |
| 156 | + |
| 157 | +template <> |
| 158 | +inline v128_t SelectUsingMask(v128_t if_mask, v128_t then_val, |
| 159 | + v128_t else_val) { |
| 160 | + return wasm_v128_bitselect(then_val, else_val, if_mask); |
| 161 | +} |
| 162 | + |
| 163 | +template <> |
| 164 | +inline int16x8_v128_t SelectUsingMask(int16x8_v128_t if_mask, |
| 165 | + int16x8_v128_t then_val, |
| 166 | + int16x8_v128_t else_val) { |
| 167 | + return to_int16x8_v128_t( |
| 168 | + wasm_v128_bitselect(then_val.v, else_val.v, if_mask.v)); |
| 169 | +} |
| 170 | + |
| 171 | +template <> |
| 172 | +inline v128_t MaskIfEqual(v128_t a, v128_t b) { |
| 173 | + return wasm_i32x4_eq(a, b); |
| 174 | +} |
| 175 | + |
| 176 | +template <> |
| 177 | +inline int16x8_v128_t MaskIfEqual(int16x8_v128_t a, int16x8_v128_t b) { |
| 178 | + return to_int16x8_v128_t(wasm_i16x8_eq(a.v, b.v)); |
| 179 | +} |
| 180 | + |
| 181 | +template <> |
| 182 | +inline v128_t MaskIfNotEqual(v128_t a, v128_t b) { |
| 183 | + return wasm_i32x4_ne(a, b); |
| 184 | +} |
| 185 | + |
| 186 | +template <> |
| 187 | +inline int16x8_v128_t MaskIfNotEqual(int16x8_v128_t a, int16x8_v128_t b) { |
| 188 | + return to_int16x8_v128_t(wasm_i16x8_ne(a.v, b.v)); |
| 189 | +} |
| 190 | + |
| 191 | +template <> |
| 192 | +inline v128_t MaskIfZero(v128_t a) { |
| 193 | + return MaskIfEqual(a, wasm_i32x4_const(0, 0, 0, 0)); |
| 194 | +} |
| 195 | + |
| 196 | +template <> |
| 197 | +inline int16x8_v128_t MaskIfZero(int16x8_v128_t a) { |
| 198 | + return MaskIfEqual( |
| 199 | + a, to_int16x8_v128_t(wasm_i16x8_const(0, 0, 0, 0, 0, 0, 0, 0))); |
| 200 | +} |
| 201 | + |
| 202 | +template <> |
| 203 | +inline v128_t MaskIfNonZero(v128_t a) { |
| 204 | + return MaskIfNotEqual(a, wasm_i32x4_const(0, 0, 0, 0)); |
| 205 | +} |
| 206 | + |
| 207 | +template <> |
| 208 | +inline int16x8_v128_t MaskIfNonZero(int16x8_v128_t a) { |
| 209 | + return MaskIfNotEqual( |
| 210 | + a, to_int16x8_v128_t(wasm_i16x8_const(0, 0, 0, 0, 0, 0, 0, 0))); |
| 211 | +} |
| 212 | + |
| 213 | +template <> |
| 214 | +inline v128_t MaskIfGreaterThan(v128_t a, v128_t b) { |
| 215 | + return wasm_i32x4_gt(a, b); |
| 216 | +} |
| 217 | + |
| 218 | +template <> |
| 219 | +inline int16x8_v128_t MaskIfGreaterThan(int16x8_v128_t a, int16x8_v128_t b) { |
| 220 | + return to_int16x8_v128_t(wasm_i16x8_gt(a.v, b.v)); |
| 221 | +} |
| 222 | + |
| 223 | +template <> |
| 224 | +inline v128_t MaskIfLessThan(v128_t a, v128_t b) { |
| 225 | + return wasm_i32x4_lt(a, b); |
| 226 | +} |
| 227 | + |
| 228 | +template <> |
| 229 | +inline int16x8_v128_t MaskIfLessThan(int16x8_v128_t a, int16x8_v128_t b) { |
| 230 | + return to_int16x8_v128_t(wasm_i16x8_lt(a.v, b.v)); |
| 231 | +} |
| 232 | + |
| 233 | +template <> |
| 234 | +inline v128_t MaskIfGreaterThanOrEqual(v128_t a, v128_t b) { |
| 235 | + return wasm_i32x4_ge(a, b); |
| 236 | +} |
| 237 | + |
| 238 | +template <> |
| 239 | +inline int16x8_v128_t MaskIfGreaterThanOrEqual(int16x8_v128_t a, |
| 240 | + int16x8_v128_t b) { |
| 241 | + return to_int16x8_v128_t(wasm_i16x8_ge(a.v, b.v)); |
| 242 | +} |
| 243 | + |
| 244 | +template <> |
| 245 | +inline v128_t MaskIfLessThanOrEqual(v128_t a, v128_t b) { |
| 246 | + return wasm_i32x4_le(a, b); |
| 247 | +} |
| 248 | + |
| 249 | +template <> |
| 250 | +inline int16x8_v128_t MaskIfLessThanOrEqual(int16x8_v128_t a, |
| 251 | + int16x8_v128_t b) { |
| 252 | + return to_int16x8_v128_t(wasm_i16x8_le(a.v, b.v)); |
| 253 | +} |
| 254 | + |
| 255 | +/* Assumptions: |
| 256 | + - All and Any are used on masks. |
| 257 | + - masks are all_ones for true lanes, all_zeroes otherwise. |
| 258 | +Hence, All means all 128bits set, and Any means any bit set. |
| 259 | +*/ |
| 260 | + |
| 261 | +template <> |
| 262 | +inline bool All(v128_t a) { |
| 263 | + return wasm_i32x4_all_true(a); |
| 264 | +} |
| 265 | + |
| 266 | +template <> |
| 267 | +inline bool All(int16x8_v128_t a) { |
| 268 | + return wasm_i16x8_all_true(a.v); |
| 269 | +} |
| 270 | + |
| 271 | +template <> |
| 272 | +inline bool Any(v128_t a) { |
| 273 | + return wasm_i32x4_any_true(a); |
| 274 | +} |
| 275 | + |
| 276 | +template <> |
| 277 | +inline bool Any(int16x8_v128_t a) { |
| 278 | + return wasm_i16x8_any_true(a.v); |
| 279 | +} |
| 280 | + |
| 281 | +template <> |
| 282 | +inline v128_t RoundingHalfSum(v128_t a, v128_t b) { |
| 283 | + // We divide the inputs before the add to avoid the overflow and costly test. |
| 284 | + const v128_t one = wasm_i32x4_const(1, 1, 1, 1); |
| 285 | + const v128_t sign_bit_mask = |
| 286 | + wasm_i32x4_const(0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| 287 | + const v128_t sum = Add(a, b); |
| 288 | + const v128_t rounded_half_sum = ShiftRight(Add(sum, one), 1); |
| 289 | + const v128_t overflow = |
| 290 | + BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)), |
| 291 | + sign_bit_mask); |
| 292 | + const v128_t result = BitXor(rounded_half_sum, overflow); |
| 293 | + return result; |
| 294 | +} |
| 295 | + |
| 296 | +template <> |
| 297 | +inline int16x8_v128_t RoundingHalfSum(int16x8_v128_t a, int16x8_v128_t b) { |
| 298 | + // Idea: go to unsigned to use wasm_u16x8_avgr, |
| 299 | + // borrowed from Intel's arm_neon_sse.h header. |
| 300 | + const v128_t constant_neg_32768 = wasm_i16x8_const( |
| 301 | + -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768); |
| 302 | + const v128_t a_unsigned = wasm_v128_xor(a.v, constant_neg_32768); |
| 303 | + const v128_t b_unsigned = wasm_v128_xor(b.v, constant_neg_32768); |
| 304 | + const v128_t avg_unsigned = wasm_u16x8_avgr(a_unsigned, b_unsigned); |
| 305 | + const v128_t avg = wasm_v128_xor(avg_unsigned, constant_neg_32768); |
| 306 | + return to_int16x8_v128_t(avg); |
| 307 | +} |
| 308 | + |
| 309 | +template <> |
| 310 | +inline v128_t SaturatingRoundingDoublingHighMul(v128_t a, v128_t b) { |
| 311 | + // TODO: switch to extended multiplication once implemented in the toolchain |
| 312 | + const v128_t a_sign = wasm_i32x4_shr(a, 31); |
| 313 | + const v128_t b_sign = wasm_i32x4_shr(b, 31); |
| 314 | + |
| 315 | + const v128_t a_ext_lo = wasm_v32x4_shuffle(a, a_sign, 0, 4, 1, 5); |
| 316 | + const v128_t a_ext_hi = wasm_v32x4_shuffle(a, a_sign, 2, 6, 3, 7); |
| 317 | + const v128_t b_ext_lo = wasm_v32x4_shuffle(b, b_sign, 0, 4, 1, 5); |
| 318 | + const v128_t b_ext_hi = wasm_v32x4_shuffle(b, b_sign, 2, 6, 3, 7); |
| 319 | + |
| 320 | + const v128_t ab_lo = wasm_i64x2_mul(a_ext_lo, b_ext_lo); |
| 321 | + const v128_t ab_hi = wasm_i64x2_mul(a_ext_hi, b_ext_hi); |
| 322 | + |
| 323 | + const v128_t nudge_2x = |
| 324 | + wasm_i64x2_const(INT64_C(0x80000000), INT64_C(0x80000000)); |
| 325 | + const v128_t ab_lo_2x = wasm_i64x2_add(ab_lo, ab_lo); |
| 326 | + const v128_t ab_hi_2x = wasm_i64x2_add(ab_hi, ab_hi); |
| 327 | + |
| 328 | + const v128_t ab_lo_rounded_2x = wasm_i64x2_add(ab_lo_2x, nudge_2x); |
| 329 | + const v128_t ab_hi_rounded_2x = wasm_i64x2_add(ab_hi_2x, nudge_2x); |
| 330 | + |
| 331 | + const v128_t prod = |
| 332 | + wasm_v32x4_shuffle(ab_lo_rounded_2x, ab_hi_rounded_2x, 1, 3, 5, 7); |
| 333 | + |
| 334 | + // Saturation only happen if a == b == INT_MIN, and this is the only case |
| 335 | + // where prod == INT_MIN (0x80000000) instead of INT_MAX (0x7FFFFFFF). |
| 336 | + const v128_t min = wasm_i32x4_const(INT32_C(0x80000000), INT32_C(0x80000000), |
| 337 | + INT32_C(0x80000000), INT32_C(0x80000000)); |
| 338 | + |
| 339 | + return wasm_v128_xor(prod, wasm_i32x4_eq(prod, min)); |
| 340 | +} |
| 341 | + |
| 342 | +template <> |
| 343 | +inline int16x8_v128_t SaturatingRoundingDoublingHighMul(int16x8_v128_t a, |
| 344 | + int16x8_v128_t b) { |
| 345 | +#if 0 |
| 346 | + // TODO: enable if https://github.com/WebAssembly/simd/pull/365 is accepted |
| 347 | + return to_int16x8_v128_t(__builtin_wasm_q15mulr_saturate_s_i16x8(a.v, b.v)); |
| 348 | +#else |
| 349 | + // TODO: switch to extended multiplication once implemented in the toolchain |
| 350 | + v128_t lo = wasm_i32x4_mul(wasm_i32x4_widen_low_i16x8(a.v), |
| 351 | + wasm_i32x4_widen_low_i16x8(b.v)); |
| 352 | + v128_t hi = wasm_i32x4_mul(wasm_i32x4_widen_high_i16x8(a.v), |
| 353 | + wasm_i32x4_widen_high_i16x8(b.v)); |
| 354 | + const v128_t inc = wasm_i32x4_const(0x4000, 0x4000, 0x4000, 0x4000); |
| 355 | + lo = wasm_i32x4_add(lo, inc); |
| 356 | + hi = wasm_i32x4_add(hi, inc); |
| 357 | + lo = wasm_i32x4_shr(lo, 15); |
| 358 | + hi = wasm_i32x4_shr(hi, 15); |
| 359 | + return to_int16x8_v128_t(wasm_i16x8_narrow_i32x4(lo, hi)); |
| 360 | +#endif |
| 361 | +} |
| 362 | + |
| 363 | +template <> |
| 364 | +inline v128_t Dup<v128_t>(std::int32_t x) { |
| 365 | + return wasm_i32x4_splat(x); |
| 366 | +} |
| 367 | + |
| 368 | +template <> |
| 369 | +inline int16x8_v128_t Dup<int16x8_v128_t>(std::int16_t x) { |
| 370 | + return to_int16x8_v128_t(wasm_i16x8_splat(x)); |
| 371 | +} |
| 372 | + |
| 373 | +// So far this is only needed for int16. |
| 374 | +template <> |
| 375 | +inline int16x8_v128_t SaturatingAdd(int16x8_v128_t a, int16x8_v128_t b) { |
| 376 | + return to_int16x8_v128_t(wasm_i16x8_add_saturate(a.v, b.v)); |
| 377 | +} |
| 378 | + |
| 379 | +} // end namespace gemmlowp |
| 380 | + |
| 381 | +#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_ |
0 commit comments