-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathMakefile
202 lines (173 loc) · 7.08 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright 2022 Google LLC All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Load Config
include ./config
.PHONY: help gcloud deploy-all terraform-init terraform-apply
help:
@echo ""
@echo "Initialize Terraform"
@echo " make terraform-init"
@echo ""
@echo "Deploy Core Services via Terraform"
@echo " make terraform-apply"
@echo ""
@echo "Deploy realtime Scoring Engine"
@echo " make deploy-scoring-engine"
@echo ""
@echo "Deploy realtime Scoring Engine in Interactive Mode (testing/debugging)"
@echo " make deploy-scoring-engine-interactive"
@echo ""
@echo "Deploy Backend API"
@echo " make deploy-backend-api"
@echo ""
@echo "Destroy/Delete all Services"
@echo " make destroy-all"
@echo ""
@echo "Destroy/Cancel Scoring Engine"
@echo " make destroy-scoring-engine"
@echo ""
@echo "Destroy/Delete Backend API Service"
@echo " make destroy-backend-api"
@echo ""
@echo "Create Vertex AI Pipeline with tfx"
@echo " make vertex-create-pipeline"
@echo ""
@echo "Update Vertex AI Pipeline with tfx"
@echo " make vertex-update-pipeline"
@echo ""
@echo "Run Vertex AI Pipeline with tfx"
@echo " make vertex-run-pipeline"
@echo ""
@echo "Upload data for Vertex AI Pipeline"
@echo " make vertex-upload-data"
@echo ""
deploy-all: terraform-init terraform-apply deploy-scoring-engine deploy-backend-api
# APIs should be enabled as part of the Terraform deployment.
# This make target can be used as an alternative way to enable
# all required GCP APIs if needed.
enable-gcp-apis:
gcloud services enable \
storage.googleapis.com \
containerregistry.googleapis.com \
artifactregistry.googleapis.com \
cloudbuild.googleapis.com \
cloudfunctions.googleapis.com \
container.googleapis.com \
run.googleapis.com \
dataflow.googleapis.com \
speech.googleapis.com \
pubsub.googleapis.com
terraform-init:
$(info GCP_PROJECT_ID is [${TF_VAR_GCP_PROJECT_ID}])
terraform init
terraform-apply:
$(info GCP_PROJECT_ID is [${TF_VAR_GCP_PROJECT_ID}])
# Create Terraform Resources
terraform apply
# Create Google Artifact Repo (this will fail if the repo already exists)
gcloud artifacts repositories create ${TF_VAR_GCP_ARTIFACT_REGISTRY_NAME} --repository-format=DOCKER --location=${TF_VAR_GCP_ARTIFACT_REGISTRY_REGION} --description="Clean Chat Docker Repository" --async
deploy-scoring-engine:
@echo "Deploying Clean-Chat Scoring Engine."
@echo "This may take a few minutes."
@echo "You can go here to see the running job: https://console.cloud.google.com/dataflow/jobs"
nohup ./components/scoring_engine/deploy-scoring-engine.sh &
deploy-scoring-engine-interactive:
@echo "Deploying Clean-Chat Scoring Engine (in interactive mode)"
./components/scoring_engine/deploy-scoring-engine-interactive.sh
deploy-backend-api:
@echo "Deploying API backend app"
./components/api/backend_python/deploy_cloud_run_for_backend.sh
destroy-all: destroy-backend-api destroy-scoring-engine destroy-terraform
destroy-backend-api:
$(info GCP_PROJECT_ID is [${TF_VAR_GCP_PROJECT_ID}])
@echo "Shutting down and deleting the Backend API Service"
./components/api/backend_python/destroy_backend_api.sh
destroy-scoring-engine:
$(info GCP_PROJECT_ID is [${TF_VAR_GCP_PROJECT_ID}])
./components/scoring_engine/cancel-dataflow-job.sh
destroy-terraform:
$(info GCP_PROJECT_ID is [${TF_VAR_GCP_PROJECT_ID}])
@echo "Shutting down and deleting all Terraform deployed services"
terraform destroy
# Clean-Chat Model Sidecar - TFX Training in Cloud
create-pipeline-cluster:
@echo "Creating cluster: ${TF_VAR_ML_CLUSTER}"
./components/model/create-pipeline-cluster.sh
tfx-create-pipeline:
tfx pipeline create \
--pipeline-path=./components/model/bert/kubeflow_dag_runner.py \
--endpoint=${KUBEFLOW_ENDPOINT} \
--build-image
tfx-update-pipeline:
tfx pipeline update \
--pipeline-path=kubeflow_dag_runner.py \
--endpoint=${KUBEFLOW_ENDPOINT}
tfx-run:
tfx run create \
--pipeline-name=${TF_VAR_ML_PIPELINE_NAME} \
--endpoint=${KUBEFLOW_ENDPOINT}
tfx-list:
tfx pipeline list \
--engine=kubeflow \
--endpoint=${KUBEFLOW_ENDPOINT}
# Antidote Model Sidecar - Model Deployment
build-model-serving:
@echo "Building Tensorflow Serving Container"
docker pull tensorflow/serving
docker run -d --name serving_base tensorflow/serving
@echo "Attaching Model"
docker cp ../components/model_pipeline/antidote_serving serving_base:/models/antidote_serving
docker commit --change "ENV MODEL_NAME antidote_serving" serving_base $USER/antidote_serving
docker tag antidote_serving gcr.io/tensorflow-serving-229609/antidote_serving:v0.1.0
docker push gcr.io/tensorflow-serving-229609/antidote_serving:v0.1.0
@echo "Model Container Pushed to Container Registry"
create-serving-cluster:
@echo "Creating Serving Cluster for Toxicity Model"
gcloud container clusters create ANTIDOTE_SERVING_CLUSTER \
--num-nodes 5 \
--service-account ${SERVICE_ACCOUNT}@${PROJECT_ID}.iam.gserviceaccount.com \
--preemptible
--enable-autoscaling \
--min-nodes=1 \
--max-nodes=3 \
--num-nodes=1
gcloud config set container/cluster ANTIDOTE_SERVING_CLUSTER
gcloud container clusters get-credentials
@echo "Serving Cluster Created"
deploy-image:
@echo "Deploying Image to K8s Cluster"
kubectl set image deployment/antidote-model-deployment image=gcr.io/tensorflow-serving-229609/antidote_serving:v0.1.0
kubectl create -f antidote_k8s.yaml
serve-latest-model:
@echo "Pushing Latest Model to Production"
# TODO: Update Parameters, Port, model name
docker run -p 8501:8501 -e MODEL_BASE_PATH=gs://$BUCKET_NAME -e MODEL_NAME=antidote_serving -t tensorflow/serving
# tfx in Vertex AI
.PHONY: vertex-create-pipeline
vertex-create-pipeline:
@echo "Create Vertex AI Pipeline"
tfx pipeline create --pipeline-path=./componens/model/bert/vertex_pipeline/vertex_dag_runner.py --engine=vertex --build-image
.PHONY: vertex-update-pipeline
vertex-update-pipeline:
@echo "Create Vertex AI Pipeline"
tfx pipeline update --pipeline-path=./components/model/bert/vertex_pipeline/vertex_dag_runner.py --engine=vertex --build-image
.PHONY: vertex-run-pipeline
vertex-run-pipeline:
@echo "Update Vertex AI Pipeline"
tfx run create --pipeline-name ${TF_VAR_ML_PIPELINE_NAME} --engine=vertex --project=${TF_VAR_GCP_PROJECT_ID} --region=${TF_VAR_GCP_REGION}
.PHONY: vertex-upload-data
vertex-upload-data:
@echo "Upload Data for Vertex AI Pipeline"
gsutil cp ./components/model/sample_data/sample_data.csv ${ML_GCS_BUCKET}/tfx_pipeline_output/${TF_VAR_ML_PIPELINE_NAME}/training-data/sample_data.csv
gsutil cp ./components/model/bert/vertex_pipeline/model.py ${ML_GCS_BUCKET}/tfx_pipeline_output/${TF_VAR_ML_PIPELINE_NAME}/module-file/model.py