-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmultiply_proof.py
237 lines (186 loc) · 6.76 KB
/
multiply_proof.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from pypcs.curve import Fp, Fr, ec_mul, G1Point
import random
# Zero-Knowledge Multiply Proof
# TODO: should move to common file
class PedersenParams:
def __init__(self):
self.G = G1Point.ec_gen_group1()
self.H = self.generateH()
@staticmethod
def generateH() -> G1Point:
# generate a random point as H
r = Fr.rand(random.Random("hash-to-point"))
return ec_mul(G1Point.ec_gen_group1(), r)
def commit(sk: Fr, rho: Fr, pp: PedersenParams) -> G1Point:
"""
Computationally hiding
Statistically binding
"""
return ec_mul(G1Point.ec_gen_group1(), sk) + ec_mul(pp.H, rho)
class Prover:
a: Fr
b: Fr
c: Fr # c = a * b
tau_a: Fr
tau_b: Fr
tau_c: Fr
A: G1Point
B: G1Point
C: G1Point # C = [c;tau_c]
r_a: Fr
r_b: Fr
rho_a: Fr
rho_b: Fr
e_0: Fr # blind for a * b
e_1: Fr # blind for r_a * b + r_b * a
pp: PedersenParams
rnd_gen: random.Random
def __init__(self, a: Fr, b: Fr, pp: PedersenParams):
self.rnd_gen = random.Random("multiply-prover")
self.a = a
self.b = b
self.c = a * b
self.tau_a = Fr.rand(self.rnd_gen)
self.tau_b = Fr.rand(self.rnd_gen)
self.tau_c = Fr.rand(self.rnd_gen)
self.pp = pp
self.A = commit(self.a, self.tau_a, self.pp)
self.B = commit(self.b, self.tau_b, self.pp)
self.C = commit(self.c, self.tau_c, self.pp)
def round1(self) -> tuple[G1Point, G1Point, G1Point, G1Point]:
self.r_a = Fr.rand(self.rnd_gen)
self.r_b = Fr.rand(self.rnd_gen)
self.r_c = self.r_a * self.r_b
self.rho_a = Fr.rand(self.rnd_gen)
self.rho_b = Fr.rand(self.rnd_gen)
self.rho_c = Fr.rand(self.rnd_gen)
self.e_0 = Fr.rand(self.rnd_gen)
self.e_1 = Fr.rand(self.rnd_gen)
R_A = commit(self.r_a, self.rho_a, self.pp)
R_B = commit(self.r_b, self.rho_b, self.pp)
E_0 = commit((self.r_a * self.r_b), self.e_0, self.pp)
E_1 = commit((self.r_a * self.b + self.r_b * self.a), self.e_1, self.pp)
return R_A, R_B, E_0, E_1
def round3(self, e: Fr) -> tuple[Fr, Fr, Fr, Fr, Fr]:
z_a = self.r_a + e * self.a
z_tau_a = self.rho_a + e * self.tau_a
z_b = self.r_b + e * self.b
z_tau_b = self.rho_b + e * self.tau_b
z_tau_c = self.e_0 + e * self.e_1 + e * e * self.tau_c
return z_a, z_b, z_tau_a, z_tau_b, z_tau_c
class Verifier:
A: G1Point
B: G1Point
C: G1Point
pp: PedersenParams
rnd_gen: random.Random
def __init__(self, A: G1Point, B: G1Point, C: G1Point, pp: PedersenParams):
self.rnd_gen = random.Random("multiply-verifier")
self.A = A
self.B = B
self.C = C
self.pp = pp
def round2(self: G1Point) -> Fr:
e = Fr.rand(self.rnd_gen)
return e
def verify(
self,
e: Fr,
R_A: G1Point,
R_B: G1Point,
E_0: G1Point,
E_1: G1Point,
z_a: Fr,
z_b: Fr,
z_tau_a: Fr,
z_tau_b: Fr,
z_tau_c: Fr,
) -> bool:
"""
[z_a;z_tau_a] ?= R_A + A * e
[z_b;z_tau_b] ?= R_B + B * e
[z_a*z_b;z_tau_c] ?= E_0 + e*E_1 + e*e*C
"""
return (
commit(z_a, z_tau_a, self.pp) == R_A + ec_mul(self.A, e)
and commit(z_b, z_tau_b, self.pp) == R_B + ec_mul(self.B, e)
and commit((z_a * z_b), z_tau_c, self.pp)
== E_0 + ec_mul(E_1, e) + ec_mul(self.C, e * e)
)
def run_multiply_proof(prover: Prover, verifier: Verifier) -> bool:
R_A, R_B, E_0, E_1 = prover.round1()
e = verifier.round2()
z_a, z_b, z_tau_a, z_tau_b, z_tau_c = prover.round3(e)
return verifier.verify(e, R_A, R_B, E_0, E_1, z_a, z_b, z_tau_a, z_tau_b, z_tau_c)
def simulate(A: G1Point, B: G1Point, C: G1Point, verifier: Verifier) -> Fr:
pp = verifier.pp
# 1 simulator does Round 1 of prover
# Actually we don't need to do anything, we just need to use verifier's challenge
# to generate fake the proof
# 2. simulator invoke Round 2 of verifier
st = verifier.rnd_gen.getstate()
e = verifier.round2()
# 3. simulator does Round 3 of prover
# 3.1 generate fake z_a
z_a_star = Fr.rand(random.Random("multiply-proof-z-a"))
z_tau_a_star = Fr.rand(random.Random("multiply-proof-z-tau-a"))
Z_A_star = commit(z_a_star, z_tau_a_star, pp)
R_A_star = Z_A_star - ec_mul(A, e)
# 3.2 generate fake z_b
z_b_star = Fr.rand(random.Random("multiply-proof-z-b"))
z_tau_b_star = Fr.rand(random.Random("multiply-proof-z-tau-a"))
Z_B_star = commit(z_b_star, z_tau_b_star, pp)
R_B_star = Z_B_star - ec_mul(B, e)
# 3.3 generate fake z_c_star
z_c_star = z_a_star * z_b_star
z_tau_c_star = Fr.rand(random.Random("multiply-proof-z-tauc-c"))
Z_C_star = commit(z_c_star, z_tau_c_star, pp)
E_1_star = ec_mul(
G1Point.ec_gen_group1(), Fr.rand(random.Random("multiply-proof-e-1"))
)
E_0_star = Z_C_star - ec_mul(C, e * e) - ec_mul(E_1_star, e)
verifier.rnd_gen.setstate(st)
e_star = verifier.round2()
assert e == e_star
return verifier.verify(
e,
R_A_star,
R_B_star,
E_0_star,
E_1_star,
z_a_star,
z_b_star,
z_tau_a_star,
z_tau_b_star,
z_tau_c_star,
)
def extract(prover: Prover) -> tuple[Fr, Fr, Fr]:
rng = random.Random("multiply-proof-extract")
R_A, R_B, E_0, E_1 = prover.round1()
e_1 = Fr.rand(rng)
e_2 = Fr.rand(rng)
e_3 = Fr.rand(rng)
z_a_1, z_b_1, z_tau_a_1, z_tau_b_1, z_tau_c_1 = prover.round3(e_1)
z_a_2, z_b_2, z_tau_a_2, z_tau_b_2, z_tau_c_2 = prover.round3(e_2)
z_a_3, z_b_3, z_tau_a_3, z_tau_b_3, z_tau_c_3 = prover.round3(e_3)
a = (z_a_2 - z_a_1) / (e_2 - e_1)
b = (z_b_2 - z_b_1) / (e_2 - e_1)
tau_a = (z_tau_a_2 - z_tau_a_1) / (e_2 - e_1)
tau_b = (z_tau_b_2 - z_tau_b_1) / (e_2 - e_1)
# (e_1 + e_2) * (a + b) + (r_a * b + r_b * a) = (z_a_1 * z_b_1 - z_a_2 * z_b_2) / (e_1 - e_2)
# (e_1 + e_3) * (a + b) + (r_a * b + r_b * a) = (z_a_1 * z_b_1 - z_a_3 * z_b_3) / (e_1 - e_3)
# (e_2 - e_3) * (a + b) = (z_a_1 * z_b_1 - z_a_2 * z_b_2) / (e_1 - e_2) - (z_a_1 * z_b_1 - z_a_3 * z_b_3) / (e_1 - e_3)
c = (
(z_a_1 * z_b_1 - z_a_2 * z_b_2) / (e_1 - e_2)
- (z_a_1 * z_b_1 - z_a_3 * z_b_3) / (e_1 - e_3)
) / (e_2 - e_3)
return a, b, tau_a, tau_b, c
if __name__ == "__main__":
pedersen_params = PedersenParams()
a = Fr(31)
b = Fr(17)
prover = Prover(a, b, pedersen_params)
verifier = Verifier(prover.A, prover.B, prover.C, pedersen_params)
print(f"?: {run_multiply_proof(prover, verifier)}")
print(f"?: {simulate(prover.A, prover.B, prover.C, verifier)}")
print(f"?: {extract(prover)}")