-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm.py
251 lines (208 loc) · 8.89 KB
/
llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#--------------------------------------------------------------DSPY RAG---------------------------------------------------------------
from chromadb.utils.embedding_functions import SentenceTransformerEmbeddingFunction
import dspy
from dotenv import load_dotenv
from dspy.retrieve.chromadb_rm import ChromadbRM
from pydantic import BaseModel, Field
load_dotenv()
llm = dspy.PremAI(project_id=8883, api_key='INSERT API-KEY', temperature=1)
rm = ChromadbRM(
collection_name = "Algorithm",
persist_directory = "DB",
embedding_function = SentenceTransformerEmbeddingFunction()
)
dspy.configure(lm = llm, rm=rm)
class QuerySignature(dspy.Signature):
'''
Provide complete and to-the-point answers to student queries regarding their subjects, including both theoretical questions and numerical problems, using content from textbooks.
*You are great in mathematics so show proper steps to solve numericals*
'''
context = dspy.InputField(desc="may contain relevant facts from textbooks")
question: str = dspy.InputField(desc="Student's question, either theoretical or numerical")
answer: str = dspy.OutputField(desc="Complete and to-the-point answer")
class RAG(dspy.Module):
def __init__(self, num_passage=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passage)
self.generate_answer = dspy.ChainOfThought(signature=QuerySignature)
def forward(self, question):
context = self.retrieve(question).passages
print(context)
prediction = self.generate_answer(context = context, question=question)
return dspy.Prediction(context=context, answer=prediction.answer)
#-------------------------------------------------------------------------------------------------------------------------------------
#-------------------------------------------------------WEB APPLICATION---------------------------------------------------------------
import streamlit as st
import os
from icrawler.builtin import GoogleImageCrawler
import nltk
import time
nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
google_Crawler = GoogleImageCrawler(storage = {'root_dir': 'Images'})
st.set_page_config(layout="wide", page_title="PadhAI", page_icon=":books:")
st.markdown('''
<style>
@import url('https://fonts.googleapis.com/css2?family=Pacifico&display=swap');
body {
display: flex;
align-items: center;
justify-content: center;
height: 100vh;
background: #fff;
margin: 0;
flex-direction: column;
}
.logo-container {
display: flex;
align-items: center;
justify-content: center;
position: relative;
flex-direction: column;
}
.book {
width: 50px;
height: 60px;
position: relative;
display: flex;
justify-content: center;
align-items: center;
}
.book::before, .book::after {
content: '';
width: 25px;
height: 60px;
background: #00d4c0;
position: absolute;
border-radius: 5px;
border: 3px solid #0066ff;
}
.book::before {
left: 0;
transform: skewY(-10deg);
}
.book::after {
right: 0;
transform: skewY(10deg);
}
.text {
font-family: 'Pacifico', cursive;
font-size: 48px;
color: var(--text-color);
margin-top: 20px;
}
.subtitle {
font-size: 14px;
color: var(--text-color);
text-align: center;
margin-top: 5px;
}
</style>
<script>
const setTheme = (theme) => {
document.documentElement.style.setProperty('--text-color', theme === 'dark' ? '#fff' : '#333');
}
const observer = new MutationObserver((mutations) => {
mutations.forEach((mutation) => {
if (mutation.attributeName === 'class') {
const theme = document.body.classList.contains('dark') ? 'dark' : 'light';
setTheme(theme);
}
});
});
observer.observe(document.body, { attributes: true });
// Initial theme set
const initialTheme = document.body.classList.contains('dark') ? 'dark' : 'light';
setTheme(initialTheme);
</script>
<div class="logo-container">
<div class="book"></div>
<div class="text">PadhAI</div>
</div>
<div class="subtitle">REVOLUTIONIZING EDUCATION, ONE LESSON AT A TIME</div>
''', unsafe_allow_html=True)
s1, s2 = st.columns([3,1])
if 'history' not in st.session_state:
st.session_state.history = []
def get_response(question):
response = RAG().forward(question=question)
return response
with s1:
st.header("Ask Me 💭")
question = st.chat_input("Ask a question:")
if question:
with st.spinner('Waiting for response...'):
response = get_response(question)
time.sleep(2) # Simulate waiting time for LLM response
st.session_state.history.append((question, response.answer))
if st.session_state.history:
for q, r in st.session_state.history:
with st.chat_message("user"):
st.write(f"**Question:** {q}")
with st.chat_message("assistant"):
st.write(f"**Answer:** {r}")
st.header("Quiz 📜")
if 'quiz_state' not in st.session_state:
st.session_state.quiz_state = None
if 'quiz_score' not in st.session_state:
st.session_state.quiz_score = {"correct": 0, "total": 0}
user_topic = st.text_input("Enter the topic for the quiz:")
if user_topic and st.session_state.quiz_state is None:
# Retrieve relevant context from ChromaDB
context = dspy.Retrieve()(user_topic).passages
class QuizInput(BaseModel):
topic: str = Field(description="The topic for the quiz")
context: list[str] = Field(description="Relevant context from ChromaDB")
class QuizOption(BaseModel):
option: str = Field(description="A possible answer option")
class QuizOutput(BaseModel):
question: str = Field(description="The generated quiz question")
options: list[QuizOption] = Field(description="The list of answer options")
correct_option: int = Field(ge=0, le=3, description="The index of the correct answer option")
class QuizSignature(dspy.Signature):
"""Generate a quiz question on a user-provided topic with 4 answer options."""
input: QuizInput = dspy.InputField()
output: QuizOutput = dspy.OutputField()
predictor = dspy.TypedPredictor(QuizSignature)
quiz_input = QuizInput(topic=user_topic, context=context)
prediction = predictor(input=quiz_input)
st.session_state.quiz_state = {
"question": prediction.output.question,
"options": [option.option for option in prediction.output.options],
"correct_option_index": prediction.output.correct_option,
"topic": user_topic
}
if st.session_state.quiz_state:
quiz_state = st.session_state.quiz_state
st.write(f"**Quiz Topic:** {quiz_state['topic']}")
st.write(f"**Question:** {quiz_state['question']}")
selected_option = st.radio("Select an option:", quiz_state['options'], key="quiz_option")
if st.button("Check Answer"):
st.session_state.quiz_score["total"] += 1
if quiz_state['options'].index(selected_option) == quiz_state['correct_option_index']:
st.success("Correct!")
st.session_state.quiz_score["correct"] += 1
else:
st.error("Incorrect. Try again.")
st.session_state.quiz_state = None # Reset quiz state after checking the answer
if st.session_state.quiz_score['total']==0:
pass
else:
st.write(f"**Score:** {st.session_state.quiz_score['correct']} out of {st.session_state.quiz_score['total']} "
f"({(st.session_state.quiz_score['correct'] / st.session_state.quiz_score['total']) * 100:.2f}%)")
if st.button("Next Question"):
st.session_state.quiz_state = None # Reset quiz state to generate a new question
with s2:
st.header("Images")
if st.session_state.history:
q,r = st.session_state.history[-1]
google_Crawler.crawl(keyword = f'show relevant Diagram or picture from NCERT textbook - Question: {q}, Answer: {r}', max_num = 5)
image_folder = 'Images'
if os.path.exists(image_folder):
images = [os.path.join(image_folder, img) for img in os.listdir(image_folder) if img.endswith(('png', 'jpg', 'jpeg'))]
if images:
with st.container(border=True, height=400):
st.image(images, caption=[os.path.basename(img) for img in images], use_container_width=True)
for img in images:
os.remove(img)
#---------------------------------------------------------------------------------------------------------------------------------------