Skip to content

Commit c8c2499

Browse files
committed
Add table for example
1 parent 45a5801 commit c8c2499

File tree

4 files changed

+22
-1
lines changed

4 files changed

+22
-1
lines changed

README.md

+22-1
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ The main implementation can be found in the `nn_interpretability` package. We al
7070
<td width="33%" align="center">VGG19 Layer:25 Filter: 150</td>
7171
</tr>
7272
<tr>
73-
<td width="33%" align="center"><img src="./assets/castle_dream.jpg"></td>
73+
<td width="33%" align="center"><img src="./data/castle.jpg"></td>
7474
<td width="33%" align="center"><img src="./assets/castle_dream_25_final.jpg"></td>
7575
<td width="33%" align="center"><img src="./assets/castle_dream_25_150_final.jpg"></td>
7676
</tr>
@@ -88,6 +88,27 @@ import nn_interpretability as nni
8888
```
8989
An example usage of a particular interpretability method can be found in the corresponding Jupyter Notebook as outlined below. We also prepared a general demonstration of the developed package in this [Jupyter Notebook.](./14.Demo.ipynb)
9090

91+
<table border=0 width="50px" >
92+
<tbody>
93+
<tr>
94+
<td width="30%" align="center">Original Image</td>
95+
<td width="70%" align="center"><img src="./data/bike.jpg"></td>
96+
</tr>
97+
<tr>
98+
<td width="30%" align="center">LRP Composite</td>
99+
<td width="70%" align="center"><img src="./assets/bike_lrp.png"></td>
100+
</tr>
101+
<tr>
102+
<td width="30%" align="center">Guided Backpropagation</td>
103+
<td width="70%" align="center"><img src="./assets/bike_guided.png"></td>
104+
</tr>
105+
<tr>
106+
<td width="30%" align="center">DeepLIFT RevealCancel</td>
107+
<td width="70%" align="center"><img src="./assets/assets/bike_deeplift.png"></td>
108+
</tr>
109+
</tbody>
110+
</table>
111+
91112
**Note:** The package assume that layers of the model are constructed inside containers(e.g. features and classifier). This setting is due to the structure of the pretrained models from the model zoo. You could use `torch.nn.Sequential` or `torch.nn.ModuleList` to achieve this on your own model.
92113

93114
## Interpretability methods

assets/bike_deeplift.png

129 KB
Loading

assets/bike_guided.png

95.3 KB
Loading

assets/bike_lrp.png

54.1 KB
Loading

0 commit comments

Comments
 (0)