-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
269 lines (214 loc) · 11 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# metaphlan_tools/cli.py
import os
import argparse
import pandas as pd
import glob
from .parser import parse_metaphlan_file, combine_samples, load_metadata, join_abundance_with_metadata
from .stats import calculate_alpha_diversity, compare_alpha_diversity, calculate_beta_diversity, perform_permanova, differential_abundance_analysis
from .viz import plot_relative_abundance_heatmap, plot_alpha_diversity_boxplot, plot_stacked_bar, plot_longitudinal_changes
def process_files(args):
"""Process MetaPhlAn output files and generate combined abundance table."""
print(f"Processing files from {args.input_dir}...")
# Find all MetaPhlAn output files
file_pattern = os.path.join(args.input_dir, args.file_pattern)
files = glob.glob(file_pattern)
if not files:
print(f"No files found matching pattern: {file_pattern}")
return
print(f"Found {len(files)} files.")
# Combine files into a single abundance table
abundance_df = combine_samples(files)
# Save the combined table
output_file = os.path.join(args.output_dir, "combined_abundance.csv")
abundance_df.to_csv(output_file)
print(f"Combined abundance table saved to {output_file}")
return abundance_df
def analyze_diversity(args):
"""Analyze alpha and beta diversity."""
# Load abundance data
abundance_file = os.path.join(args.output_dir, "combined_abundance.csv")
if not os.path.exists(abundance_file):
print(f"Abundance file not found: {abundance_file}")
print("Please run 'process' command first.")
return
abundance_df = pd.read_csv(abundance_file, index_col=0)
# Load metadata
metadata_df = load_metadata(args.metadata_file)
# Calculate alpha diversity
print("Calculating alpha diversity...")
alpha_df = calculate_alpha_diversity(abundance_df)
alpha_file = os.path.join(args.output_dir, "alpha_diversity.csv")
alpha_df.to_csv(alpha_file)
print(f"Alpha diversity saved to {alpha_file}")
# Compare alpha diversity between groups
if args.group_var:
print(f"Comparing alpha diversity by {args.group_var}...")
alpha_stats = compare_alpha_diversity(alpha_df, metadata_df, args.group_var)
# Save results
alpha_stats_df = pd.DataFrame(alpha_stats).T
alpha_stats_file = os.path.join(args.output_dir, f"alpha_diversity_{args.group_var}_stats.csv")
alpha_stats_df.to_csv(alpha_stats_file)
print(f"Alpha diversity comparison saved to {alpha_stats_file}")
# Create boxplot
fig = plot_alpha_diversity_boxplot(alpha_df, metadata_df, args.group_var)
boxplot_file = os.path.join(args.output_dir, f"alpha_diversity_{args.group_var}_boxplot.png")
fig.savefig(boxplot_file, dpi=300, bbox_inches='tight')
print(f"Alpha diversity boxplot saved to {boxplot_file}")
# Calculate beta diversity
print("Calculating beta diversity...")
beta_dm = calculate_beta_diversity(abundance_df)
# Perform PERMANOVA if group variable provided
if args.group_var:
print(f"Performing PERMANOVA by {args.group_var}...")
permanova_results = perform_permanova(beta_dm, metadata_df, args.group_var)
# Save results
permanova_file = os.path.join(args.output_dir, f"permanova_{args.group_var}_results.txt")
with open(permanova_file, 'w') as f:
for key, value in permanova_results.items():
f.write(f"{key}: {value}\n")
print(f"PERMANOVA results saved to {permanova_file}")
def differential_abundance(args):
"""Perform differential abundance analysis."""
# Load abundance data
abundance_file = os.path.join(args.output_dir, "combined_abundance.csv")
if not os.path.exists(abundance_file):
print(f"Abundance file not found: {abundance_file}")
print("Please run 'process' command first.")
return
abundance_df = pd.read_csv(abundance_file, index_col=0)
# Load metadata
metadata_df = load_metadata(args.metadata_file)
# Perform differential abundance analysis
print(f"Performing differential abundance analysis by {args.group_var}...")
da_results = differential_abundance_analysis(abundance_df, metadata_df, args.group_var)
# Save results
da_file = os.path.join(args.output_dir, f"differential_abundance_{args.group_var}.csv")
da_results.to_csv(da_file)
print(f"Differential abundance results saved to {da_file}")
# Create visualization for top significant species
if not da_results.empty:
# Get top 5 significant species
sig_species = da_results[da_results['Adjusted P-value'] < 0.05].head(5)['Species'].tolist()
for species in sig_species:
if species in abundance_df.index:
# Create boxplot
fig = plot_stacked_bar(abundance_df.loc[[species]], metadata_df, args.group_var)
plot_file = os.path.join(args.output_dir, f"species_{species.replace(' ', '_')}_{args.group_var}.png")
fig.savefig(plot_file, dpi=300, bbox_inches='tight')
print(f"Species plot saved to {plot_file}")
def longitudinal_analysis(args):
"""Perform longitudinal analysis."""
# Load abundance data
abundance_file = os.path.join(args.output_dir, "combined_abundance.csv")
if not os.path.exists(abundance_file):
print(f"Abundance file not found: {abundance_file}")
print("Please run 'process' command first.")
return
abundance_df = pd.read_csv(abundance_file, index_col=0)
# Load metadata
metadata_df = load_metadata(args.metadata_file)
# Check required metadata variables
required_vars = [args.time_var, args.subject_var]
if not all(var in metadata_df.columns for var in required_vars):
print(f"Missing required metadata variables. Need: {', '.join(required_vars)}")
return
# Get top species for longitudinal analysis
mean_abundance = abundance_df.mean(axis=1)
top_species = mean_abundance.nlargest(5).index.tolist()
print(f"Performing longitudinal analysis for top {len(top_species)} species...")
# Create longitudinal plots for each species
for species in top_species:
fig = plot_longitudinal_changes(
abundance_df,
metadata_df,
species,
args.time_var,
args.subject_var,
args.group_var
)
plot_file = os.path.join(
args.output_dir,
f"longitudinal_{species.replace(' ', '_')}_{args.time_var}.png"
)
fig.savefig(plot_file, dpi=300, bbox_inches='tight')
print(f"Longitudinal plot for {species} saved to {plot_file}")
def create_report(args):
"""Create a summary report."""
# Load abundance data
abundance_file = os.path.join(args.output_dir, "combined_abundance.csv")
if not os.path.exists(abundance_file):
print(f"Abundance file not found: {abundance_file}")
print("Please run 'process' command first.")
return
abundance_df = pd.read_csv(abundance_file, index_col=0)
# Load metadata if provided
metadata_df = None
if args.metadata_file:
metadata_df = load_metadata(args.metadata_file)
# Create global abundance visualization
print("Creating abundance heatmap...")
fig = plot_relative_abundance_heatmap(
abundance_df,
metadata_df,
args.group_var,
top_n=30
)
heatmap_file = os.path.join(args.output_dir, "abundance_heatmap.png")
fig.savefig(heatmap_file, dpi=300, bbox_inches='tight')
print(f"Abundance heatmap saved to {heatmap_file}")
# Create stacked bar plot
print("Creating stacked bar plot...")
fig = plot_stacked_bar(abundance_df, metadata_df, args.group_var)
bar_file = os.path.join(args.output_dir, "abundance_barplot.png")
fig.savefig(bar_file, dpi=300, bbox_inches='tight')
print(f"Stacked bar plot saved to {bar_file}")
def main():
"""Main CLI entry point."""
parser = argparse.ArgumentParser(description="Nasal Microbiome Analysis Tool")
subparsers = parser.add_subparsers(dest="command", help="Command to run")
# Process command
process_parser = subparsers.add_parser("process", help="Process MetaPhlAn output files")
process_parser.add_argument("--input-dir", required=True, help="Directory containing MetaPhlAn files")
process_parser.add_argument("--output-dir", required=True, help="Directory to save output files")
process_parser.add_argument("--file-pattern", default="*.txt", help="Pattern to match MetaPhlAn files")
# Diversity command
diversity_parser = subparsers.add_parser("diversity", help="Analyze microbial diversity")
diversity_parser.add_argument("--metadata-file", required=True, help="Path to metadata file")
diversity_parser.add_argument("--output-dir", required=True, help="Directory to save output files")
diversity_parser.add_argument("--group-var", help="Metadata variable to group by")
# Differential abundance command
diff_parser = subparsers.add_parser("differential", help="Perform differential abundance analysis")
diff_parser.add_argument("--metadata-file", required=True, help="Path to metadata file")
diff_parser.add_argument("--output-dir", required=True, help="Directory to save output files")
diff_parser.add_argument("--group-var", required=True, help="Metadata variable to group by")
# Longitudinal command
time_parser = subparsers.add_parser("longitudinal", help="Perform longitudinal analysis")
time_parser.add_argument("--metadata-file", required=True, help="Path to metadata file")
time_parser.add_argument("--output-dir", required=True, help="Directory to save output files")
time_parser.add_argument("--time-var", required=True, help="Metadata variable for time point")
time_parser.add_argument("--subject-var", required=True, help="Metadata variable for subject ID")
time_parser.add_argument("--group-var", help="Metadata variable to group by")
# Report command
report_parser = subparsers.add_parser("report", help="Generate summary report")
report_parser.add_argument("--metadata-file", help="Path to metadata file")
report_parser.add_argument("--output-dir", required=True, help="Directory to save output files")
report_parser.add_argument("--group-var", help="Metadata variable to group by")
args = parser.parse_args()
# Create output directory if it doesn't exist
if hasattr(args, 'output_dir') and args.output_dir:
os.makedirs(args.output_dir, exist_ok=True)
# Execute command
if args.command == "process":
process_files(args)
elif args.command == "diversity":
analyze_diversity(args)
elif args.command == "differential":
differential_abundance(args)
elif args.command == "longitudinal":
longitudinal_analysis(args)
elif args.command == "report":
create_report(args)
else:
parser.print_help()
if __name__ == "__main__":
main()